Cefotaxime

Cefotaxime

Cefotaxime Recall

Get an alert when a recall is issued.

Questions & Answers

Side Effects & Adverse Reactions

BEFORE THERAPY WITH CEFOTAXIME IS INSTITUTED, CAREFUL INQUIRY SHOULD BE MADE TO DETERMINE WHETHER THE PATIENT HAS HAD PREVIOUS HYPERSENSITIVITY REACTIONS TO CEFOTAXIME SODIUM, CEPHALOSPORINS, PENICILLINS, OR OTHER DRUGS. THIS PRODUCT SHOULD BE GIVEN WITH CAUTION TO PATIENTS WITH TYPE I HYPERSENSITIVITY REACTIONS TO PENICILLIN. ANTIBIOTICS SHOULD BE ADMINISTERED WITH CAUTION TO ANY PATIENT WHO HAS DEMONSTRATED SOME FORM OF ALLERGY, PARTICULARLY TO DRUGS. IF AN ALLERGIC REACTION TO CEFOTAXIME OCCURS, DISCONTINUE TREATMENT WITH THE DRUG. SERIOUS HYPERSENSITIVITY REACTIONS MAY REQUIRE EPINEPHRINE AND OTHER EMERGENCY MEASURES.
During post-marketing surveillance, a potentially life-threatening arrhythmia was reported in each of six patients who received a rapid (less than 60 seconds) bolus injection of cefotaxime through a central venous catheter. Therefore, cefotaxime should only be administered as instructed in the DOSAGE AND ADMINISTRATION section.

Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including cefotaxim, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile.

C. difficile
produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.

If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated.

Legal Issues

There is currently no legal information available for this drug.

FDA Safety Alerts

There are currently no FDA safety alerts available for this drug.

Manufacturer Warnings

There is currently no manufacturer warning information available for this drug.

FDA Labeling Changes

There are currently no FDA labeling changes available for this drug.

Uses

To reduce the development of drug-resistant bacteria and maintain the effectiveness of cefotaxime for injection and other antibacterial drugs, cefotaxime for injection should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy.  In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

TreatmentCefotaxime is indicated for the treatment of patients with serious infections caused by susceptible strains of the designated microorganisms in the diseases listed below.
  1. Lower respiratory tract infections, including pneumonia, caused by Streptococcus pneumoniae (formerly Diplococcus pneumoniae), Streptococcus pyogenes* (Group A streptococci) and other streptococci (excluding enterococci, e.g., Enterococcus faecalis), Staphylococcus aureus (penicillinase and non-penicillinase producing), Escherichia coli, Klebsiella species, Haemophilus influenzae (including ampicillin resistant strains), Haemophilus parainfluenzae, Proteus mirabilis, Serratia marcescens*, Enterobacter species, indole positive Proteus and Pseudomonas species (including P. aeruginosa).
  2. Genitourinary infections. Urinary tract infections caused by Enterococcus species, Staphylococcus epidermidis, Staphylococcus aureus*, (penicillinase and non-penicillinase producing), Citrobacter species, Enterobacter species, Escherichia coli, Klebsiella  species, Proteus mirabilis, Proteus vulgaris*, Providencia stuartii, Morganella morganii*, Providencia rettgeri*, Serratia marcescens and Pseudomonas species (including P. aeruginosa). Also, uncomplicated gonorrhea (cervical/urethral and rectal) caused by Neisseria  gonorrhoeae , including penicillinase producing sjtrains.    
  3. Gynecologic infections, including pelvic inflammatory disease, endometritis and pelvic cellulitis caused by Staphylococcus epidermidis, Streptococcus species, Enterococcus species, Enterobacter species*, Klebsiella species*, Escherichia coli, Proteus mirabilis, Bacteroides species (including Bacteroides fragilis*), Clostridium species, and anaerobic cocci (including Peptostreptococcus species and Peptococcus species) and Fusobacterium species (including F. Nucleatum*). Cefotaxime, like other cephalosporins, has no activity against Chlamydia trachomatis.
    Therefore, when cephalosporins are used in the treatment of patients with pelvic inflammatory disease and C. trachomatis is one of the suspected pathogens, appropriate anti-chlamydial coverage should be added.    
  4. Bacteremia/Septicemia caused by Escherichia coli, Klebsiella species, and Serratia marcescens, Staphylococcus aureus andStreptococcus species (including S. pneumonia).    
  5. Skin and skin structure infections caused by Staphylococcus aureus (penicillinase and non-penicillinase producing),Staphylococcus epidermidis, Streptococcus pyogenes (Group A streptococci) and other streptococci, Enterococcus species,         Acinetobacter species*, Escherichia coli, Citrobacter species (including C. freundii*), Enterobacter species, Klebsiella species, Proteus mirabilis, Proteus vulgaris*, Morganella morganii, Providencia rettgeri*, Pseudomonas species, Serratia marcescens, Bacteroides species, and anaerobic cocci (including Peptostreptococcus* species and Peptococcus species).
  6. Intra-abdominal infections including peritonitis caused by Streptococcus species*, Escherichia coli, Klebsiella species, Bacteroides species, and anaerobic cocci (including Peptostreptococcus* species and Peptococcus* species) Proteus mirabilis*, and Clostridium species*.    
  7. Bone and/or joint infections caused by Staphylococcus aureus (penicillinase and non-penicillinase producing strains), Streptococcus species (including S. pyogenes*), Pseudomonas species (including P. aeruginosa*), and Proteus mirabilis*.    
  8. Central nervous system infections, e.g., meningitis and ventriculitis, caused by Neisseria meningitidis, Haemophilus influenzae,    Streptococcus pneumoniae, Klebsiella pneumoniae* and Escherichia coli*.   
(*) Efficacy for this organism, in this organ system, has been studied in fewer than 10 infections.
Although many strains of enterococci (e.g., S. faecalis) and Pseudomonas species are resistant to cefotaxime sodium in vitro, Cefotaxime has been used successfully in treating patients with infections caused by susceptible organisms.

Specimens for bacteriologic culture should be obtained prior to therapy in order to isolate and identify causative organisms and to determine their susceptibilities to Cefotaxime. Therapy may be instituted before results of susceptibility studies are known; however, once these results become available, the antibiotic treatment should be adjusted accordingly.

In certain cases of confirmed or suspected gram-positive or gram-negative sepsis or in patients with other serious infections in which the causative organism has not been identified, Cefotaxime may be used concomitantly with an aminoglycoside. The dosage recommended in the labeling of both antibiotics may be given and depends on the severity of the infection and the patient's condition. Renal function should be carefully monitored, especially if higher dosages of the aminoglycosides are to be administered or if therapy is prolonged, because of the potential nephrotoxicity and ototoxicity of aminoglycoside antibiotics. It is possible that nephrotoxicity may be potentiated if Cefotaxime is used concomitantly with an aminoglycoside.
(*) Efficacy for this organism, in this organ system, has been studied in fewer than 10 infections.
PreventionThe administration of Cefotaxime preoperatively reduces the incidence of certain infections in patients undergoing surgical procedures (e.g., abdominal or vaginal hysterectomy, gastrointestinal and genitourinary tract surgery) that may be classified as contaminated or potentially contaminated.
In patients undergoing cesarean section, intraoperative (after clamping the umbilical cord) and postoperative use of Cefotaxime may also reduce the incidence of certain postoperative infections. See DOSAGE AND ADMINISTRATION section.
Effective use for elective surgery depends on the time of administration. To achieve effective tissue levels, Cefotaxime should be given 1/2 or 1 1/2 hours before surgery. See DOSAGE AND ADMINISTRATION section.
For patients undergoing gastrointestinal surgery, preoperative bowel preparation by mechanical cleansing as well as with a non-absorbable antibiotic (e.g., neomycin) is recommended.
If there are signs of infection, specimens for culture should be obtained for identification of the causative organism so that appropriate therapy may be instituted.
To reduce the development of drug-resistant bacteria and maintain the effectiveness of cefotaxime and other antibacterial drugs, cefotaxime should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.
TreatmentCefotaxime is indicated for the treatment of patients with serious infections caused by susceptible strains of the designated microorganisms in the diseases listed below.
  1. Lower respiratory tract infections, including pneumonia, caused by Streptococcus pneumoniae (formerly Diplococcus pneumoniae), Streptococcus pyogenes* (Group A streptococci) and other streptococci (excluding enterococci, e.g., Enterococcus faecalis), Staphylococcus aureus (penicillinase and non-penicillinase producing), Escherichia coli, Klebsiella species, Haemophilus influenzae (including ampicillin resistant strains), Haemophilus parainfluenzae, Proteus mirabilis, Serratia marcescens*, Enterobacter species, indole positive Proteus and Pseudomonas species (including P. aeruginosa).
  2. Genitourinary infections. Urinary tract infections caused by Enterococcus species, Staphylococcus epidermidis, Staphylococcus aureus*, (penicillinase and non-penicillinase producing), Citrobacter species, Enterobacter species, Escherichia coli, Klebsiella  species, Proteus mirabilis, Proteus vulgaris*, Providencia stuartii, Morganella morganii*, Providencia rettgeri*, Serratia marcescens and Pseudomonas species (including P. aeruginosa). Also, uncomplicated gonorrhea (cervical/urethral and rectal) caused by Neisseria  gonorrhoeae , including penicillinase producing sjtrains.    
  3. Gynecologic infections, including pelvic inflammatory disease, endometritis and pelvic cellulitis caused by Staphylococcus epidermidis, Streptococcus species, Enterococcus species, Enterobacter species*, Klebsiella species*, Escherichia coli, Proteus mirabilis, Bacteroides species (including Bacteroides fragilis*), Clostridium species, and anaerobic cocci (including Peptostreptococcus species and Peptococcus species) and Fusobacterium species (including F. Nucleatum*). Cefotaxime, like other cephalosporins, has no activity against Chlamydia trachomatis.
    Therefore, when cephalosporins are used in the treatment of patients with pelvic inflammatory disease and C. trachomatis is one of the suspected pathogens, appropriate anti-chlamydial coverage should be added.    
  4. Bacteremia/Septicemia caused by Escherichia coli, Klebsiella species, and Serratia marcescens, Staphylococcus aureus andStreptococcus species (including S. pneumonia).    
  5. Skin and skin structure infections caused by Staphylococcus aureus (penicillinase and non-penicillinase producing),Staphylococcus epidermidis, Streptococcus pyogenes (Group A streptococci) and other streptococci, Enterococcus species,         Acinetobacter species*, Escherichia coli, Citrobacter species (including C. freundii*), Enterobacter species, Klebsiella species, Proteus mirabilis, Proteus vulgaris*, Morganella morganii, Providencia rettgeri*, Pseudomonas species, Serratia marcescens, Bacteroides species, and anaerobic cocci (including Peptostreptococcus* species and Peptococcus species).
  6. Intra-abdominal infections including peritonitis caused by Streptococcus species*, Escherichia coli, Klebsiella species, Bacteroides species, and anaerobic cocci (including Peptostreptococcus* species and Peptococcus* species) Proteus mirabilis*, and Clostridium species*.    
  7. Bone and/or joint infections caused by Staphylococcus aureus (penicillinase and non-penicillinase producing strains), Streptococcus species (including S. pyogenes*), Pseudomonas species (including P. aeruginosa*), and Proteus mirabilis*.    
  8. Central nervous system infections, e.g., meningitis and ventriculitis, caused by Neisseria meningitidis, Haemophilus influenzae,    Streptococcus pneumoniae, Klebsiella pneumoniae* and Escherichia coli*.   
(*) Efficacy for this organism, in this organ system, has been studied in fewer than 10 infections.
Although many strains of enterococci (e.g., S. faecalis) and Pseudomonas species are resistant to cefotaxime sodium in vitro, Cefotaxime has been used successfully in treating patients with infections caused by susceptible organisms.

Specimens for bacteriologic culture should be obtained prior to therapy in order to isolate and identify causative organisms and to determine their susceptibilities to Cefotaxime. Therapy may be instituted before results of susceptibility studies are known; however, once these results become available, the antibiotic treatment should be adjusted accordingly.

In certain cases of confirmed or suspected gram-positive or gram-negative sepsis or in patients with other serious infections in which the causative organism has not been identified, Cefotaxime may be used concomitantly with an aminoglycoside. The dosage recommended in the labeling of both antibiotics may be given and depends on the severity of the infection and the patient's condition. Renal function should be carefully monitored, especially if higher dosages of the aminoglycosides are to be administered or if therapy is prolonged, because of the potential nephrotoxicity and ototoxicity of aminoglycoside antibiotics. It is possible that nephrotoxicity may be potentiated if Cefotaxime is used concomitantly with an aminoglycoside.
(*) Efficacy for this organism, in this organ system, has been studied in fewer than 10 infections. PreventionThe administration of Cefotaxime preoperatively reduces the incidence of certain infections in patients undergoing surgical procedures (e.g., abdominal or vaginal hysterectomy, gastrointestinal and genitourinary tract surgery) that may be classified as contaminated or potentially contaminated.
In patients undergoing cesarean section, intraoperative (after clamping the umbilical cord) and postoperative use of Cefotaxime may also reduce the incidence of certain postoperative infections. See DOSAGE AND ADMINISTRATION section.
Effective use for elective surgery depends on the time of administration. To achieve effective tissue levels, Cefotaxime should be given 1/2 or 1 1/2 hours before surgery. See DOSAGE AND ADMINISTRATION section.
For patients undergoing gastrointestinal surgery, preoperative bowel preparation by mechanical cleansing as well as with a non-absorbable antibiotic (e.g., neomycin) is recommended.
If there are signs of infection, specimens for culture should be obtained for identification of the causative organism so that appropriate therapy may be instituted.
To reduce the development of drug-resistant bacteria and maintain the effectiveness of cefotaxime and other antibacterial drugs, cefotaxime should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

History

There is currently no drug history available for this drug.

Other Information

Cefotaxime for injection is a semisynthetic, broad spectrum cephalosporin antibiotic for parenteral administration. It is the sodium salt of 7-[2-(2-amino-4-thiazolyl) glyoxylamido]-3-(hydroxymethyl)-8-oxo-5-thia-1-azabicyclo [4.2.0] oct-2-ene-2-carboxylate 7 2 (Z)-(o-methyloxime), acetate (ester). Cefotaxime for injection, USP contains approximately 50.5 mg (2.2 mEq) of sodium per gram of cefotaxime activity. Solutions of Cefotaxime for injection, USP range from very pale yellow to light amber depending on the concentration and the diluent used. The pH of the injectable solutions usually ranges from 5.0 to 7.5.

Structure

The molecular formula is C 16H 16N 5NaO 7S 2 and the molecular weight is 477.45
Cefotaxime for injection, USP is supplied as a dry powder in conventional vials.

Cefotaxime Manufacturers


  • Wockhardt Usa Llc.
    Cefotaxime Injection, Powder, For Solution [Wockhardt Usa Llc.]
  • Wockhardt Limited
    Cefotaxime Injection, Powder, For Solution [Wockhardt Limited]
  • West-ward Pharmaceutical Corp
    Cefotaxime Injection, Powder, For Solution [West-ward Pharmaceutical Corp]
  • West-ward Pharmaceutical Corp
    Cefotaxime Injection [West-ward Pharmaceutical Corp]

Login To Your Free Account