FDA records indicate that there are no current recalls for this drug.
Are you a medical professional?
Trending Topics
Dg Health Cough Dm Recall
Get an alert when a recall is issued.
Questions & Answers
Side Effects & Adverse Reactions
DOSES OF CEREBYX ARE ALWAYS EXPRESSED IN TERMS OF MILLIGRAMS OF PHENYTOIN SODIUM EQUIVALENTS (mg PE) 1 MG PE IS EQUIVALENT TO 1 MG PHENYTOIN SODIUM.
DO NOT, THEREFORE, MAKE ANY ADJUSTMENT IN THE RECOMMENDED DOSES WHEN SUBSTITUTING CEREBYX FOR PHENYTOIN SODIUM OR VICE VERSA. FOR EXAMPLE, IF A PATIENT IS RECEIVING 1000 MG PE OF CEREBYX, THAT IS EQUIVALENT TO 1000 MG OF PHENYTOIN SODIUM.
The following warnings are based on experience with CEREBYX or phenytoin.
Do not confuse the amount of drug to be given in PE with the concentration of the drug in the vial.
Medication errors associated with CEREBYX have resulted in patients receiving the wrong dose of fosphenytoin. CEREBYX is marketed in 2 mL vials containing a total of 100 mg PE and 10 mL vials containing a total of 500 mg PE. The concentration of each vial is 50 mg PE/ mL. Errors have occurred when the concentration of the vial (50 mg PE/mL) was misinterpreted to mean that the total content of the vial was 50 mg PE. These errors have resulted in two- or ten-fold overdoses of CEREBYX since each vial actually contains a total of 100 mg PE or 500 mg PE. In some cases, ten-fold overdoses were associated with fatal outcomes. To help minimize confusion, the prescribed dose of CEREBYX should always be expressed in milligrams of phenytoin equivalents (mg PE) (see Dosage and Administration). Additionally, when ordering and storing CEREBYX, consider displaying the total drug content (i.e., 100 mg PE/ 2 mL or 500 mg PE/ 10 mL) instead of concentration in computer systems, pre-printed orders, and automated dispensing cabinet databases to help ensure that total drug content can be clearly identified. Care should be taken to ensure the appropriate volume of CEREBYX is withdrawn from the vial when preparing the drug for administration. Attention to these details may prevent some CEREBYX medication errors from occurring.
Because of the increased risk of adverse cardiovascular reactions associated with rapid administration, do not administer CEREBYX at a rate greater than 150 mg PE/min.
The dose of IV CEREBYX (15 to 20 mg PE/kg) that is used to treat status epilepticus is administered at a maximum rate of 150 mg PE/min. The typical CEREBYX infusion administered to a 50 kg patient would take between 5 and 7 minutes. Note that the delivery of an identical molar dose of phenytoin using parenteral Dilantin or generic phenytoin sodium injection cannot be accomplished in less than 15 to 20 minutes because of the untoward cardiovascular effects that accompany the direct intravenous administration of phenytoin at rates greater than 50 mg/min.
If rapid phenytoin loading is a primary goal, IV administration of CEREBYX is preferred because the time to achieve therapeutic plasma phenytoin concentrations is greater following IM than that following IV administration (see DOSAGE AND ADMINISTRATION).
As non-emergency therapy, intravenous CEREBYX should be administered more slowly. Because of the risks of cardiac and local toxicity associated with IV CEREBYX, oral phenytoin should be used whenever possible.
Because adverse cardiovascular reactions have occurred during and after infusions, careful cardiac monitoring is needed during and after the administration of intravenous CEREBYX. Reduction in rate of administration or discontinuation of dosing may be needed.
Adverse cardiovascular reactions include severe hypotension and cardiac arrhythmias. Cardiac arrhythmias have included bradycardia, heart block, QT interval prolongation, ventricular tachycardia, and ventricular fibrillation which have resulted in asystole, cardiac arrest, and death. Severe complications are most commonly encountered in critically ill patients, elderly patients, and patients with hypotension and severe myocardial insufficiency. However, cardiac events have also been reported in adults and children without underlying cardiac disease or comorbidities and at recommended doses and infusion rates.
Antiepileptic drugs should not be abruptly discontinued because of the possibility of increased seizure frequency, including status epilepticus. When, in the judgment of the clinician, the need for dosage reduction, discontinuation, or substitution of alternative antiepileptic medication arises, this should be done gradually. However, in the event of an allergic or hypersensitivity reaction, rapid substitution of alternative therapy may be necessary. In this case, alternative therapy should be an antiepileptic drug not belonging to the hydantoin chemical class.
Serious and sometimes fatal dermatologic reactions, including toxic epidermal necrolysis (TEN) and Stevens-Johnson syndrome (SJS), have been reported with phenytoin treatment. The onset of symptoms is usually within 28 days, but can occur later. CEREBYX should be discontinued at the first sign of a rash, unless the rash is clearly not drug-related. If signs or symptoms suggest SJS/TEN, use of this drug should not be resumed and alternative therapy should be considered. If a rash occurs, the patient should be evaluated for signs and symptoms of Drug Reaction with Eosinophilia and Systemic Symptoms (see DRESS/Multiorgan hypersensitivity below).
Studies in patients of Chinese ancestry have found a strong association between the risk of developing SJS/TEN and the presence of HLA-B*1502, an inherited allelic variant of the HLA B gene, in patients using carbamazepine. Limited evidence suggests that HLA-B*1502 may be a risk factor for the development of SJS/TEN in patients of Asian ancestry taking other antiepileptic drugs associated with SJS/TEN, including phenytoin. Consideration should be given to avoiding CEREBYX as an alternative for carbamazepine patients positive for HLA-B*1502.
The use of HLA-B*1502 genotyping has important limitations and must never substitute for appropriate clinical vigilance and patient management. The role of other possible factors in the development of, and morbidity from, SJS/TEN, such as antiepileptic drug (AED) dose, compliance, concomitant medications, comorbidities, and the level of dermatologic monitoring have not been studied.
Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS), also known as Multiorgan hypersensitivity, has been reported in patients taking antiepileptic drugs, including phenytoin and CEREBYX. Some of these events have been fatal or life-threatening. DRESS typically, although not exclusively, presents with fever, rash, and/or lymphadenopathy, in association with other organ system involvement, such as hepatitis, nephritis, hematological abnormalities, myocarditis, or myositis sometimes resembling an acute viral infection. Eosinophilia is often present. Because this disorder is variable in its expression, other organ systems not noted here may be involved. It is important to note that early manifestations of hypersensitivity, such as fever or lymphadenopathy, may be present even though rash is not evident. If such signs or symptoms are present, the patient should be evaluated immediately. CEREBYX should be discontinued if an alternative etiology for the signs or symptoms cannot be established.
CEREBYX and other hydantoins are contraindicated in patients who have experienced phenytoin hypersensitivity (see CONTRAINDICATIONS). Additionally, consider alternatives to structurally similar drugs such as carboxamides (e.g., carbamazepine), barbiturates, succinimides, and oxazolidinediones (e.g., trimethadione) in these same patients. Similarly, if there is a history of hypersensitivity reactions to these structurally similar drugs in the patient or immediate family members, consider alternatives to CEREBYX.
Cases of acute hepatotoxicity, including infrequent cases of acute hepatic failure, have been reported with phenytoin. These events may be part of the spectrum of DRESS or may occur in isolation. Other common manifestations include jaundice, hepatomegaly, elevated serum transaminase levels, leukocytosis, and eosinophilia. The clinical course of acute phenytoin hepatotoxicity ranges from prompt recovery to fatal outcomes. In these patients with acute hepatotoxicity, CEREBYX should be immediately discontinued and not readministered.
Hematopoietic complications, some fatal, have occasionally been reported in association with administration of phenytoin. These have included thrombocytopenia, leukopenia, granulocytopenia, agranulocytosis, and pancytopenia with or without bone marrow suppression. There have been a number of reports that have suggested a relationship between phenytoin and the development of lymphadenopathy (local or generalized), including benign lymph node hyperplasia, pseudolymphoma, lymphoma, and Hodgkin's disease. Although a cause and effect relationship has not been established, the occurrence of lymphadenopathy indicates the need to differentiate such a condition from other types of lymph node pathology. Lymph node involvement may occur with or without symptoms and signs resembling DRESS. In all cases of lymphadenopathy, follow-up observation for an extended period is indicated and every effort should be made to achieve seizure control using alternative antiepileptic drugs.
Acute alcohol intake may increase plasma phenytoin concentrations while chronic alcohol use may decrease plasma concentrations.
An increase in seizure frequency may occur during pregnancy because of altered phenytoin pharmacokinetics. Periodic measurement of plasma phenytoin concentrations may be valuable in the management of pregnant women as a guide to appropriate adjustment of dosage (see PRECAUTIONS, Laboratory Tests). However, postpartum restoration of the original dosage will probably be indicated.
If this drug is used during pregnancy, or if the patient becomes pregnant while taking the drug, the patient should be apprised of the potential harm to the fetus.
Prenatal exposure to phenytoin may increase the risks for congenital malformations and other adverse developmental outcomes. Increased frequencies of major malformations (such as orofacial clefts and cardiac defects), minor anomalies (dysmorphic facial features, nail and digit hypoplasia), growth abnormalities (including microcephaly), and mental deficiency have been reported among children born to epileptic women who took phenytoin alone or in combination with other antiepileptic drugs during pregnancy. There have also been several reported cases of malignancies, including neuroblastoma, in children whose mothers received phenytoin during pregnancy. The overall incidence of malformations for children of epileptic women treated with antiepileptic drugs (phenytoin and/or others) during pregnancy is about 10%, or two-to three-fold that in the general population. However, the relative contributions of antiepileptic drugs and other factors associated with epilepsy to this increased risk are uncertain and in most cases it has not been possible to attribute specific developmental abnormalities to particular antiepileptic drugs. Patients should consult with their physicians to weigh the risks and benefits of phenytoin during pregnancy.
A potentially life-threatening bleeding disorder related to decreased levels of vitamin K-dependent clotting factors may occur in newborns exposed to phenytoin in utero. This drug-induced condition can be prevented with vitamin K administration to the mother before delivery and to the neonate after birth.
Administration of phenytoin to pregnant animals resulted in teratogenicity (increased incidences of fetal malformations) and other developmental toxicity (including embryofetal death, growth impairment, and behavioral abnormalities) in multiple animal species at clinically relevant doses.
Legal Issues
There is currently no legal information available for this drug.
FDA Safety Alerts
There are currently no FDA safety alerts available for this drug.
Manufacturer Warnings
There is currently no manufacturer warning information available for this drug.
FDA Labeling Changes
There are currently no FDA labeling changes available for this drug.
Uses
CEREBYX is indicated for the control of generalized tonic-clonic status epilepticus and prevention and treatment of seizures occurring during neurosurgery. CEREBYX can also be substituted, short-term, for oral phenytoin. CEREBYX should be used only when oral phenytoin administration is not possible. CEREBYX must not be given orally.
History
There is currently no drug history available for this drug.
Other Information
CEREBYX® (fosphenytoin sodium injection) is a prodrug intended for parenteral administration; its active metabolite is phenytoin. 1.5 mg of fosphenytoin sodium is equivalent to 1 mg phenytoin sodium, and is referred to as 1 mg phenytoin sodium equivalents (PE). The amount and concentration of fosphenytoin is always expressed in terms of mg PE.
CEREBYX is marketed in 2 mL vials containing a total of 100 mg PE and 10 mL vials containing a total of 500 mg PE. The concentration of each vial is 50 mg PE/mL. CEREBYX is supplied in vials as a ready-mixed solution in Water for Injection, USP, and Tromethamine, USP (TRIS), buffer adjusted to pH 8.6 to 9.0 with either Hydrochloric Acid, NF, or Sodium Hydroxide, NF. CEREBYX is a clear, colorless to pale yellow, sterile solution.
The chemical name of fosphenytoin is 5,5-diphenyl-3-[(phosphonooxy)methyl]-2,4-imidazolidinedione disodium salt. The molecular structure of fosphenytoin is:
The molecular weight of fosphenytoin is 406.24.
IMPORTANT NOTE: Throughout all CEREBYX® product labeling, the amount and concentration of fosphenytoin are always expressed in terms of phenytoin sodium equivalents (PE). Fosphenytoin's weight is expressed as phenytoin sodium equivalents to avoid the need to perform molecular weight-based adjustments when substituting fosphenytoin for phenytoin or vice versa
Care should be taken to ensure that CEREBYX is always prescribed and dispensed in phenytoin sodium equivalent (PE) (see DOSAGE AND ADMINISTRATION).
Sources
Dg Health Cough Dm Manufacturers
-
Dolgencorp, Llc
Dg Health Cough Dm | Pfizer Laboratories
The dose, concentration, and infusion rate of CEREBYX should always be expressed as phenytoin sodium equivalents (PE). There is no need to perform molecular weight-based adjustments when converting between fosphenytoin and phenytoin sodium doses. CEREBYX should always be prescribed and dispensed in phenytoin sodium equivalent units (PE). 1.5 mg of fosphenytoin sodium is equivalent to 1 mg phenytoin sodium, and is referred to as 1 mg PE. The amount and concentration of fosphenytoin is always expressed in terms of mg of phenytoin sodium equivalents (mg PE).
Do not confuse the concentration of CEREBYX with the total amount of drug in the vial.
Caution must be used when administering CEREBYX due to the risk of dosing errors (see WARNINGS). Medication errors associated with CEREBYX have resulted in patients receiving the wrong dose of fosphenytoin. CEREBYX is marketed in 2 mL vials containing a total of 100 mg PE and 10 mL vials containing a total of 500 mg PE. Both vials contain a concentration of 50 mg PE/mL. Errors have occurred when the concentration of the vial (50 mg PE/mL) was misinterpreted to mean that the total content of the vial was 50 mg PE. These errors have resulted in two- or ten-fold overdoses of CEREBYX since each of the vials actually contains a total of 100 mg PE or 500 mg PE. In some cases, ten-fold overdoses were associated with fatal outcomes. To help minimize confusion, the prescribed dose of CEREBYX should always be expressed in milligrams of phenytoin equivalents (mg PE). Additionally, when ordering and storing CEREBYX, consider displaying the total drug content (i.e., 100 mg PE/ 2 mL or 500 mg PE/ 10 mL) instead of concentration in computer systems, pre-printed orders, and automated dispensing cabinet databases to help ensure that total drug content can be clearly identified. Care should be taken to ensure the appropriate volume of CEREBYX is withdrawn from the vial when preparing the dose for administration. Attention to these details may prevent some CEREBYX medication errors from occurring.
Prior to IV infusion, dilute CEREBYX in 5% dextrose or 0.9% saline solution for injection to a concentration ranging from 1.5 to 25 mg PE/mL. The maximum concentration of CEREBYX in any solution should be 25 mg PE/mL. When CEREBYX is given as an intravenous infusion, CEREBYX needs to be diluted and should only be administered at a rate not exceeding 150 mg PE/min.
Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit.
Status Epilepticus The loading dose of CEREBYX is 15 to 20 mg PE/kg administered at 100 to 150 mg PE/min. Because of the risk of hypotension, CEREBYX should be administered no faster than 150 mg PE/min. Continuous monitoring of the electrocardiogram, blood pressure, and respiratory function is essential and the patient should be observed throughout the period where maximal serum phenytoin concentrations occur, approximately 10 to 20 minutes after the end of CEREBYX infusions. Because the full antiepileptic effect of phenytoin, whether given as CEREBYX or parenteral phenytoin, is not immediate, other measures, including concomitant administration of an IV benzodiazepine, will usually be necessary for the control of status epilepticus. The loading dose should be followed by maintenance doses of either CEREBYX or phenytoin.If administration of CEREBYX does not terminate seizures, the use of other anticonvulsants and other appropriate measures should be considered.
Even though loading doses of CEREBYX have been given by the IM route for other indications when IV access is impossible, IM CEREBYX should ordinarily not be used in the treatment of status epilepticus because therapeutic phenytoin concentrations may not be reached as quickly as with IV administration.
Nonemergent Loading and Maintenance DosingBecause of the risks of cardiac and local toxicity associated with intravenous CEREBYX, oral phenytoin should be used whenever possible.
The loading dose of CEREBYX is 10 – 20 mg PE/kg given IV or IM. The rate of administration for IV CEREBYX should be no greater than 150 mg PE/min. Continuous monitoring of the electrocardiogram, blood pressure, and respiratory function is essential and the patient should be observed throughout the period where maximal serum phenytoin concentrations occur (approximately 20 minutes after the end of CEREBYX infusion).
The initial daily maintenance dose of CEREBYX is 4 – 6 mg PE/kg/day in divided doses.
IM or IV Substitution For Oral Phenytoin TherapyWhen treatment with oral phenytoin is not possible, CEREBYX can be substituted for oral phenytoin at the same total daily dose. Dilantin capsules are approximately 90% bioavailable by the oral route. Phenytoin, supplied as CEREBYX, is 100% bioavailable by both the IM and IV routes. For this reason, plasma phenytoin concentrations may increase modestly when IM or IV CEREBYX is substituted for oral phenytoin sodium therapy. The rate of administration for IV CEREBYX should be no greater than 150 mg PE/min. In controlled trials, IM CEREBYX was administered as a single daily dose utilizing either 1 or 2 injection sites. Some patients may require more frequent dosing.
Dosing in Special Populations Patients with Renal or Hepatic DiseaseDue to an increased fraction of unbound phenytoin in patients with renal or hepatic disease, or in those with hypoalbuminemia, the interpretation of total phenytoin plasma concentrations should be made with caution (see CLINICAL PHARMACOLOGY: Special Populations). Unbound phenytoin concentrations may be more useful in these patient populations. After IV CEREBYX administration to patients with renal and/or hepatic disease, or in those with hypoalbuminemia, fosphenytoin clearance to phenytoin may be increased without a similar increase in phenytoin clearance. This has the potential to increase the frequency and severity of adverse events (see PRECAUTIONS).
Elderly PatientsAge does not have a significant impact on the pharmacokinetics of fosphenytoin following CEREBYX administration. Phenytoin clearance is decreased slightly in elderly patients and lower or less frequent dosing may be required.
PediatricThe safety and efficacy of CEREBYX in pediatric patients have not been established.
-
Dolgencorp, Llc
Dg Health Cough Dm | Jubilant Cadista Pharmaceuticals Inc.
2.1 Dosage in Adult Patients with Normal Renal FunctionThe usual dose of levofloxacin tablets, USP are 250 mg, or 500 mg administered orally every 24 hours, as indicated by infection and described in Table 1.
These recommendations apply to patients with creatinine clearance ≥ 50 mL/min. For patients with creatinine clearance < 50 mL/min, adjustments to the dosing regimen are required [see Dosage and Administration (2.3)].
Table 1: Dosage in Adult Patients with Normal Renal Function (creatinine clearance ≥ 50 mL/min)
Type of Infection* Dosed Every 24 hours Duration (days)† Nosocomial Pneumonia 750 mg 7-14 Community Acquired Pneumonia‡ 500 mg 7-14 Community Acquired Pneumonia§ 750 mg 5 Acute Bacterial Sinusitis 750 mg 5 500 mg 10-14 Acute Bacterial Exacerbation of Chronic Bronchitis 500 mg 7 Complicated Skin and Skin Structure Infections (SSSI) 750 mg 7-14 Uncomplicated SSSI 500 mg 7-10 Chronic Bacterial Prostatitis 500 mg 28 Complicated Urinary Tract Infection (cUTI) or Acute Pyelonephritis (AP)¶ 750 mg 5 Complicated Urinary Tract Infection (cUTI) or Acute Pyelonephritis (AP)# 250 mg 10 Uncomplicated Urinary Tract Infection 250 mg 3 Inhalational Anthrax (Post-Exposure), adult and pediatric patients > 50 kg Þ,β
Pediatric patients < 50 kg and ≥ 6 months of age Þ,β 500 mg
see Table 2 below (2.2) 60β
60β Plague, adult and pediatric patients > 50 kg à
Pediatric patients < 50 kg and ≥ 6 months of age 500 mg
see Table 2 below (2.2) 10 to 14
10 to 14* Due to the designated pathogens [see Indications and Usage (1)].
† Sequential therapy (intravenous to oral) may be instituted at the discretion of the physician.
‡ Due to methicillin-susceptible Staphylococcus aureus, Streptococcus pneumoniae (including multi-drug-resistant isolates [MDRSP]), Haemophilus influenzae, Haemophilus parainfluenzae, Klebsiella pneumoniae, Moraxella catarrhalis, Chlamydophila pneumoniae, Legionella pneumophila, or Mycoplasma pneumoniae [see Indications and Usage (1.2)].
§ Due to Streptococcus pneumoniae (excluding multi-drug-resistant isolates [MDRSP]), Haemophilus influenzae, Haemophilus parainfluenzae, Mycoplasma pneumoniae, or Chlamydophila pneumoniae [see Indications and Usage (1.3)].
¶ This regimen is indicated for cUTI due to Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis and AP due to E. coli, including cases with concurrent bacteremia.
This regimen is indicated for cUTI due to Enterococcus faecalis, Enterococcus cloacae, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa; and for AP due to E. coli.
Þ Drug administration should begin as soon as possible after suspected or confirmed exposure to aerosolized B. anthracis. This indication is based on a surrogate endpoint. Levofloxacin plasma concentrations achieved in humans are reasonably likely to predict clinical benefit [see Clinical Studies (14.9)].
β The safety of levofloxacin in adults for durations of therapy beyond 28 days or in pediatric patients for durations beyond 14 days has not been studied. An increased incidence of musculoskeletal adverse events compared to controls has been observed in pediatric patients [see Warnings and Precautions (5.10), Use in Specific Populations (8.4), and Clinical Studies (14.9)]. Prolonged levofloxacin therapy should only be used when the benefit outweighs the risk.
à Drug administration should begin as soon as possible after suspected or confirmed exposure to Yersinia pestis. Higher doses of levofloxacin typically used for treatment of pneumonia can be used for treatment of plague, if clinically indicated.The dosage in pediatric patients ≥ 6 months of age is described below in Table 2.
Table 2: Dosage in Pediatric Patients ≥ 6 months of age
Type of Infection* Dose Freq. Once every Duration† Inhalational Anthrax (post-exposure) ‡,§ Pediatric patients > 50 kg 500 mg 24 hr 60 days§ Pediatric patients < 50 kg and ≥ 6 months of age 8 mg/kg
(not to exceed 250 mg per dose) 12 hr 60 days§ Plague¶ Pediatric patients > 50 kg 500 mg 24 hr 10 to 14 days Pediatric patients < 50 kg and ≥ 6 months of age 8 mg/kg
(not to exceed 250 mg per dose) 12 hr 10 to 14 days* Due to Bacillus anthracis [see Indications and Usage (1.13)] and Yersinia pestis [see Indications and Usage (1.14)].
2.3 Dosage Adjustment in Adults with Renal Impairment
† Sequential therapy (intravenous to oral) may be instituted at the discretion of the physician.
‡ Drug administration should begin as soon as possible after suspected or confirmed exposure to aerosolized B.anthracis. This indication is based on a surrogate endpoint. Levofloxacin plasma concentrations achieved in humans are reasonably likely to predict clinical benefit [see Clinical Studies (14.9)]
§ The safety of levofloxacin in pediatric patients for durations of therapy beyond 14 days has not been studied. An increased incidence of musculoskeletal adverse events compared to controls has been observed in pediatric patients [see Warnings and Precautions (5.10), Use in Specific Populations (8.4), and Clinical Studies (14.9)]. Prolonged levofloxacin therapy should only be used when the benefit outweighs the risk.
¶ Drug administration should begin as soon as possible after suspected or confirmed exposure to Yersinia pestis.Administer levofloxacin tablets, USP with caution in the presence of renal insufficiency. Careful clinical observation and appropriate laboratory studies should be performed prior to and during therapy since elimination of levofloxacin may be reduced.
No adjustment is necessary for patients with a creatinine clearance ≥ 50 mL/min.
In patients with impaired renal function (creatinine clearance < 50 mL/min), adjustment of the dosage regimen is necessary to avoid the accumulation of levofloxacin due to decreased clearance [see Use in Specific Populations (8.6)].
Table 3 shows how to adjust dose based on creatinine clearance.
Table 3: Dosage Adjustment in Adult Patients with Renal Impairment (creatinine clearance < 50 mL/min) Dosage in Normal Renal Function Every 24 hours Creatinine Clearance
20 to 49 mL/minCreatinine Clearance
10 to 19 mL/min Hemodialysis or Chronic Ambulatory Peritoneal Dialysis (CAPD) 750 mg 750 mg every 48 hours 750 mg initial dose, then 500 mg every 48 hours 750 mg initial dose, then 500 mg every 48 hours 500 mg 500 mg initial dose, then 250 mg every 24 hours 500 mg initial dose, then 250 mg every 48 hours 500 mg initial dose, then 250 mg every 48 hours 250 mg No dosage adjustment required 250 mg every 48 hours. If treating uncomplicated UTI, then no dosage adjustment is required No information on dosing adjustment is availableLevofloxacin tablets, USP should be administered at least two hours before or two hours after antacids containing magnesium, aluminum, as well as sucralfate, metal cations such as iron, and multivitamin preparations with zinc or didanosine chewable/buffered tablets or the pediatric powder for oral solution [see Drug Interactions (7.1) and Patient Counseling Information (17.2)].
2.5 Administration Instructions Food and Levofloxacin Tablets, USPLevofloxacin tablets, USP can be administered without regard to food.
Hydration for Patients Receiving Levofloxacin Tablets, USPAdequate hydration of patients receiving oral levofloxacin tablets, USP should be maintained to prevent the formation of highly concentrated urine. Crystalluria and cylindruria have been reported with quinolones [see Adverse Reactions (6.1) and Patient Counseling Information (17.2)].
Login To Your Free Account