FDA records indicate that there are no current recalls for this drug.
Are you a medical professional?
Trending Topics
Fludeoxyglucose F 18 Recall
Get an alert when a recall is issued.
Questions & Answers
Side Effects & Adverse Reactions
There is currently no warning information available for this product. We apologize for any inconvenience.
Legal Issues
There is currently no legal information available for this drug.
FDA Safety Alerts
There are currently no FDA safety alerts available for this drug.
Manufacturer Warnings
There is currently no manufacturer warning information available for this drug.
FDA Labeling Changes
There are currently no FDA labeling changes available for this drug.
Uses
1 INDICATIONS AND USAGE
Fludeoxyglucose F18 Injection is indicated for positron emission tomography (PET) imaging in the following settings:
1.1 Oncology
For assessment of abnormal glucose metabolism to assist in the evaluation of malignancy in patients with known or suspected abnormalities found by other testing modalities, or in patients with an existing diagnosis of cancer.
1.2 Cardiology
For the identification of left ventricular myocardium with residual glucose metabolism and reversible loss of systolic function in patients with coronary artery disease and left ventricular dysfunction, when used together with myocardial perfusion imaging.
1.3 Neurology
For the identification of regions of abnormal glucose metabolism associated with foci of epileptic seizures.
History
There is currently no drug history available for this drug.
Other Information
11 DESCRIPTION
11.1 Chemical Characteristics
Fludeoxyglucose F 18 Injection is a positron emitting radiopharmaceutical that is used for diagnostic purposes in conjunction with positron emission tomography (PET) imaging. The active ingredient 2-deoxy-2-[18F]fluoro-D-glucose has the molecular formula of C6H1118FO5 with a molecular weight of 181.26, and has the following chemical structure:
Fludeoxyglucose F 18 Injection is provided as a ready to use sterile, pyrogen free, clear, colorless citrate buffered solution. Each mL contains between 0.15 to 18.5 GBq (4.0 - 500 mCi) of 2-deoxy-2-[18F]fluoro-D-glucose at the EOS, 9.0 mg of sodium chloride in citrate buffer. The pH of the solution is between 5.5 and 7.5. The solution is packaged in a multiple-dose glass vial and does not contain any preservative.
11.2 Physical Characteristics
Fluorine F 18 decays by emitting positron to Oxygen O 18 (stable) and has a physical half-life of 109.7 minutes. The principal photons useful for imaging are the dual 511 keV gamma photons, that are produced and emitted simultaneously in opposite direction when the positron interacts with an electron (Table 2).
Table 2. Principal Radiation Emission Data for Fluorine F 18
Radiation/Emission % Per Disintegration Mean Energy
Positron(β+) 96.73 249.8 keV
Gamma(±) 193.46 511.0 keV
The specific gamma ray constant (point source air kerma coefficient) for fluorine F 18 is 5.7 R/hr/mCi (1.35 x 10 -6 Gy/hr/kBq) at 1 cm. The half-value layer (HVL) for the 511 keV photons is 4 mm lead (Pb). The range of attenuation coefficients for this radionuclide as a function of lead shield thickness is shown in Table 3. For example, the interposition of an 8 mm thickness of Pb, with a coefficient of attenuation of 0.25, will decrease the external radiation by 75%.
Table 3. Radiation Attenuation of 511 keV Photons by lead (Pb) shielding
Shield thickness
(Pb) mm Coefficient of
attenuation
0 0.00
4 0.50
8 0.25
13 0.10
26 0.01
39 0.001
52 0.0001
For use in correcting for physical decay of this radionuclide, the fractions remaining at selected intervals after calibration are shown in Table 4.
Table 4. Physical Decay Chart for Fluorine F 18
Minutes Fraction Remaining
0 1.000
15 0.909
30 0.826
60 0.683
110 0.500
220 0.250
Sources
Fludeoxyglucose F 18 Manufacturers
-
Spectron Mrc, Llc
Fludeoxyglucose F 18 | Spectron Mrc, Llc
2 DOSAGE AND ADMINISTRATION
Fludeoxyglucose F18 Injection emits radiation. Use procedures to minimize radiation exposure. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description(11.2)].
2.1 Recommended Dose for Adults
Within the oncology, cardiology and neurology settings, the recommended dose for adults is 5 – 10 mCi (185 – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric Patients
Within the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [see Use in Special Populations(8.4)].
2.3 Patient Preparation
• To minimize the radiation absorbed dose to the bladder, encourage adequate hydration. Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study.
• Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour.
• Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [see Warnings and Precautions(5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug’s injection.
• In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia.
2.4 Radiation Dosimetry
The estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injection *
Organ Newborn 1-year old 5-year old 10-year old 15-year old Adult
(3.4 kg) (9.8 kg) (19 kg) (32 kg) (57 kg) (70 kg)
Bladder wall† 4.3 1.7 0.93 0.60 0.40 0.32
Heart wall 2.4 1.2 0.70 0.44 0.29 0.22
Pancreas 2.2 0.68 0.33 0.25 0.13 0.096
Spleen 2.2 0.84 0.46 0.29 .19 0.14
Lungs 0.96 0.38 0.20 0.13 0.092 0.064
Kidneys 0.81 0.34 0.19 0.13 0.089 0.074
Ovaries 0.80 0.8 0.19 0.11 0.058 0.053
Uterus 0.79 0.35 0.19 0.12 0.076 0.062
LLI wall‡ 0.69 0.28 0.15 0.097 0.060 0.051
Liver 0.69 0.31 0.17 0.11 0.076 0.058
Gallbladder wall0.69 0.26 0.14 0.093 0.059 0.049
Small intestine 0.68 0.29 0.15 0.096 0.060 0.047
ULI wall§ 0.67 0.27 0.15 0.090 0.057 0.046
Stomach wall 0.65 0.27 0.14 0.089 0.057 0.047
Adrenals 0.65 0.28 0.15 0.095 0.061 0.048
Testes 0.64 0.27 0.14 0.085 0.052 0.041
Red marrow 0.62 0.26 0.14 0.089 0.057 0.047
Thymus 0.61 0.26 0.14 0.086 0.056 0.044
Thyroid 0.61 0.26 0.13 0.080 0.049 0.039
Muscle 0.58 0.25 0.13 0.078 0.049 0.039
Bone surface 0.57 0.24 0.12 0.079 0.052 0.041
Breast 0.54 0.22 0.11 0.068 0.043 0.034
Skin 0.49 0.20 0.10 0.060 0.037 0.030
Brain 0.29 0.13 0.09 0.078 0.072 0.070
Other tissues 0.59 0.25 0.13 0.083 0.052 0.042* MIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al.1 and Jones et al.2
† The dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.
‡ LLI = lower large intestine;
§ ULI = upper large intestine
2.5 Radiation Safety – Drug Handling
• Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons.
• Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides.
• Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description (11.2)].
• The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed.
2.6 Drug Preparation and Administration
• Calculate the necessary volume to administer based on calibration time and dose.
• Aseptically withdraw Fludeoxyglucose F18 Injection from its container.
• Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit.
• Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations.
• Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS.
2.7 Imaging Guidelines
• Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration.
• Acquire static emission images 30 – 100 minutes from the time of injection. -
Global Isotopes, Llc D/b/a Zevacor Molecular
Fludeoxyglucose F 18 | Global Isotopes, Llc D/b/a Zevacor Molecular
Fludeoxyglucose F18 Injection emits radiation. Use procedures to minimize radiation exposure. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description (11.2)].
2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 mCi–10 mCi (185 MBq–370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [see Use in Special Populations (8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration. Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study. Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4–6 hours prior to the drug’s injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50–75 grams) prior to Fludeoxyglucose F18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F18 Injection are shown in Table 1. These estimates were calculated based on human data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group).
The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimate Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F18 Injectiona OrganNewborn
(3.4kg)
1-year old
(9.8 kg)
5-year old
(19kg)
10-year old
(32 kg)
15-year old
(57 kg)
Adult
(70 kg)
Bladder Wallb 4.3 1.7 0.93 0.60 0.40 0.32 Heart Wall 2.4 1.2 0.70 0.44 0.29 0.22 Pancreas 2.2 0.68 0.33 0.25 0.13 0.096 Spleen 2.2 0.84 0.46 0.29 0.19 0.14 Lungs 0.96 0.38 0.20 0.13 0.092 0.064 Kidneys 0.81 0.34 0.19 0.13 0.089 0.074 Ovaries 0.80 0.8 0.19 0.11 0.058 0.053 Uterus 0.79 0.35 0.19 0.12 0.076 0.062 LLI Wall* 0.69 0.28 0.15 0.097 0.060 0.051 Liver 0.69 0.31 0.17 0.11 0.076 0.058 Gallbladder Wall 0.69 0.26 0.14 0.093 0.059 0.049 Small Intestine 0.68 0.29 0.15 0.096 0.060 0.047 ULI Wall** 0.67 0.27 0.15 0.090 0.057 0.046 Stomach Wall 0.65 0.27 0.14 0.089 0.057 0.047 Adrenals 0.65 0.28 0.15 0.095 0.061 0.048 Testes 0.64 0.27 0.14 0.085 0.052 0.041 Red Marrow 0.62 0.26 0.14 0.089 0.057 0.047 Thymus 0.61 0.26 0.14 0.086 0.056 0.044 Thyroid 0.61 0.26 0.13 0.080 0.049 0.039 Muscle 0.58 0.25 0.13 0.078 0.049 0.039 Bone Surface 0.57 0.24 0.12 0.079 0.052 0.041 Breast 0.54 0.22 0.11 0.068 0.043 0.034 Skin 0.49 0.20 0.10 0.060 0.037 0.030 Brain 0.29 0.13 0.09 0.078 0.072 0.070 Other Tissues 0.59 0.25 0.13 0.083 0.052 0.042a MIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the bio-distribution based on data from Gallagher et al.1 and Jones et al.2
b The dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.
*LLI = lower large intestine; **ULI = upper large intestine.
2.5 Radiation Safety - Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a Properly calibrated dose calibrator before administration to the patient [see Description (11.2)]. The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection from its container. Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F18 Injection within 12 hours from the EOS 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F18 Injection administration. Acquire static emission images 30–100 minutes from the time of injection. 2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 mCi–10 mCi (185 MBq–370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [see Use in Special Populations (8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration. Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study. Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4–6 hours prior to the drug’s injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50–75 grams) prior to Fludeoxyglucose F18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F18 Injection are shown in Table 1. These estimates were calculated based on human data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group).
The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimate Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F18 Injectiona OrganNewborn
(3.4kg)
1-year old
(9.8 kg)
5-year old
(19kg)
10-year old
(32 kg)
15-year old
(57 kg)
Adult
(70 kg)
Bladder Wallb 4.3 1.7 0.93 0.60 0.40 0.32 Heart Wall 2.4 1.2 0.70 0.44 0.29 0.22 Pancreas 2.2 0.68 0.33 0.25 0.13 0.096 Spleen 2.2 0.84 0.46 0.29 0.19 0.14 Lungs 0.96 0.38 0.20 0.13 0.092 0.064 Kidneys 0.81 0.34 0.19 0.13 0.089 0.074 Ovaries 0.80 0.8 0.19 0.11 0.058 0.053 Uterus 0.79 0.35 0.19 0.12 0.076 0.062 LLI Wall* 0.69 0.28 0.15 0.097 0.060 0.051 Liver 0.69 0.31 0.17 0.11 0.076 0.058 Gallbladder Wall 0.69 0.26 0.14 0.093 0.059 0.049 Small Intestine 0.68 0.29 0.15 0.096 0.060 0.047 ULI Wall** 0.67 0.27 0.15 0.090 0.057 0.046 Stomach Wall 0.65 0.27 0.14 0.089 0.057 0.047 Adrenals 0.65 0.28 0.15 0.095 0.061 0.048 Testes 0.64 0.27 0.14 0.085 0.052 0.041 Red Marrow 0.62 0.26 0.14 0.089 0.057 0.047 Thymus 0.61 0.26 0.14 0.086 0.056 0.044 Thyroid 0.61 0.26 0.13 0.080 0.049 0.039 Muscle 0.58 0.25 0.13 0.078 0.049 0.039 Bone Surface 0.57 0.24 0.12 0.079 0.052 0.041 Breast 0.54 0.22 0.11 0.068 0.043 0.034 Skin 0.49 0.20 0.10 0.060 0.037 0.030 Brain 0.29 0.13 0.09 0.078 0.072 0.070 Other Tissues 0.59 0.25 0.13 0.083 0.052 0.042a MIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the bio-distribution based on data from Gallagher et al.1 and Jones et al.2
b The dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.
*LLI = lower large intestine; **ULI = upper large intestine.
2.5 Radiation Safety - Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a Properly calibrated dose calibrator before administration to the patient [see Description (11.2)]. The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection from its container. Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F18 Injection within 12 hours from the EOS 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F18 Injection administration. Acquire static emission images 30–100 minutes from the time of injection. -
Centre For Probe Development And Commercialization
Fludeoxyglucose F 18 | Centre For Probe Development And Commercialization
Fludeoxyglucose F18 Injection emits radiation. Use procedures to minimize radiation exposure. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description (11.2)].
2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 mCi – 10 mCi (185 MBq – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [see Use in Special Populations (8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration. Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study. Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [see Warnings and Precautions(5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug’s injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injection * Organ Newborn
(3.4 kg) 1-year old
(9.8 kg) 5-year old
(19 kg) 10-year old
(32 kg) 15-year old
(57 kg) Adult
(70 kg) * MIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al.1 and Jones et al.2 † The dynamic bladder model with a uniform voiding frequency of 1.5 hours was used. ‡ LLI = lower large intestine; § ULI = upper large intestine Bladder wall† 4.3 1.7 0.93 0.60 0.40 0.32 Heart wall 2.4 1.2 0.70 0.44 0.29 0.22 Pancreas 2.2 0.68 0.33 0.25 0.13 0.096 Spleen 2.2 0.84 0.46 0.29 0.19 0.14 Lungs 0.96 0.38 0.20 0.13 0.092 0.064 Kidneys 0.81 0.34 0.19 0.13 0.089 0.074 Ovaries 0.80 0.8 0.19 0.11 0.058 0.053 Uterus 0.79 0.35 0.19 0.12 0.076 0.062 LLI wall‡ 0.69 0.28 0.15 0.097 0.060 0.051 Liver 0.69 0.31 0.17 0.11 0.076 0.058 Gallbladder wall 0.69 0.26 0.14 0.093 0.059 0.049 Small intestine 0.68 0.29 0.15 0.096 0.060 0.047 ULI wall§ 0.67 0.27 0.15 0.090 0.057 0.046 Stomach wall 0.65 0.27 0.14 0.089 0.057 0.047 Adrenals 0.65 0.28 0.15 0.095 0.061 0.048 Testes 0.64 0.27 0.14 0.085 0.052 0.041 Red marrow 0.62 0.26 0.14 0.089 0.057 0.047 Thymus 0.61 0.26 0.14 0.086 0.056 0.044 Thyroid 0.61 0.26 0.13 0.080 0.049 0.039 Muscle 0.58 0.25 0.13 0.078 0.049 0.039 Bone surface 0.57 0.24 0.12 0.079 0.052 0.041 Breast 0.54 0.22 0.11 0.068 0.043 0.034 Skin 0.49 0.20 0.10 0.060 0.037 0.030 Brain 0.29 0.13 0.09 0.078 0.072 0.070 Other tissues 0.59 0.25 0.13 0.083 0.052 0.042 2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the calibration time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description (11.2)]. The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection from its container. Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F 18 Injection within 19 hours from the EOS, as reflected by the expiration date and time provided on the container label. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration. Acquire static emission images 30 – 100 minutes from the time of injection. -
Triad Isotopes, Inc.
-
Iba Molecular North America, Inc.
Fludeoxyglucose F 18 | Apotex Corp
BECAUSE OF THE UNIQUE PHARMACOKINETIC PROPERTIES, DIFFICULT DOSING SCHEDULE, AND SEVERITY OF THE SIDE EFFECTS IF PATIENTS ARE IMPROPERLY MONITORED, AMIODARONE SHOULD BE ADMINISTERED ONLY BY PHYSICIANS WHO ARE EXPERIENCED IN THE TREATMENT OF LIFE-THREATENING ARRHYTHMIAS WHO ARE THOROUGHLY FAMILIAR WITH THE RISKS AND BENEFITS OF AMIODARONE THERAPY, AND WHO HAVE ACCESS TO LABORATORY FACILITIES CAPABLE OF ADEQUATELY MONITORING THE EFFECTIVENESS AND SIDE EFFECTS OF TREATMENT.
In order to insure that an antiarrhythmic effect will be observed without waiting several months, loading doses are required. A uniform, optimal dosage schedule for administration of amiodarone has not been determined. Because of the food effect on absorption, amiodarone should be administered consistently with regard to meals (see CLINICAL PHARMACOLOGY). Individual patient titration is suggested according to the following guidelines:
For life-threatening ventricular arrhythmias, such as ventricular fibrillation or hemodynamically unstable ventricular tachycardia: Close monitoring of the patients is indicated during the loading phase, particularly until risk of recurrent ventricular tachycardia or fibrillation has abated. Because of the serious nature of the arrhythmia and the lack of predictable time course of effect, loading should be performed in a hospital setting. Loading doses of 800 to 1,600 mg/day are required for 1 to 3 weeks (occasionally longer) until initial therapeutic response occurs. (Administration of amiodarone in divided doses with meals is suggested for total daily doses of 1,000 mg or higher, or when gastrointestinal intolerance occurs.) If side effects become excessive, the dose should be reduced. Elimination of recurrence of ventricular fibrillation and tachycardia usually occurs within 1 to 3 weeks, along with reduction in complex and total ventricular ectopic beats.
Since grapefruit juice is known to inhibit CYP3A4-mediated metabolism of oral amiodarone in the intestinal mucosa, resulting in increased plasma levels of amiodarone, grapefruit juice should not be taken during treatment with oral amiodarone (see PRECAUTIONS, Drug Interactions).
Upon starting amiodarone therapy, an attempt should be made to gradually discontinue prior antiarrhythmic drugs (see section on Drug Interactions). When adequate arrhythmia control is achieved, or if side effects become prominent, amiodarone dose should be reduced to 600 to 800 mg/day for one month and then to the maintenance dose, usually 400 mg/day (see CLINICAL PHARMACOLOGY–Monitoring Effectiveness). Some patients may require larger maintenance doses, up to 600 mg/day, and some can be controlled on lower doses. Amiodarone may be administered as a single daily dose, or in patients with severe gastrointestinal intolerance, as a b.i.d. dose. In each patient, the chronic maintenance dose should be determined according to antiarrhythmic effect as assessed by symptoms, Holter recordings, and/or programmed electrical stimulation and by patient tolerance. Plasma concentrations may be helpful in evaluating nonresponsiveness or unexpectedly severe toxicity (see CLINICAL PHARMACOLOGY).
The lowest effective dose should be used to prevent the occurrence of side effects. In all instances, the physician must be guided by the severity of the individual patient's arrhythmia and response to therapy.
When dosage adjustments are necessary, the patient should be closely monitored for an extended period of time because of the long and variable half-life of amiodarone and the difficulty in predicting the time required to attain a new steady-state level of drug. Dosage suggestions are summarized below:
Loading Dose Adjustment and Maintenance Dose (Daily) (Daily) Ventricular Arrhythmias 1 to 3 weeks ~1 month usual maintenance 800 to 1,600 mg 600 to 800 mg 400 mg -
Petnet Solutions, Inc.
Fludeoxyglucose F 18 | Petnet Solutions, Inc.
Fludeoxyglucose F18 Injection emits radiation. Use procedures to minimize radiation exposure. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description (11.2)].
2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 to 10 mCi (185 to 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [see Use in Special Populations (8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration. Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study.
Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour.
Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 to 6 hours prior to the drug’s injection.
In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 to 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injectiona Organ Newborn (3.4 kg) 1-year old (9.8 kg) 5-year old (19 kg) 10-year old (32 kg) 15-year old (57 kg) Adult
(70 kg) Bladder wallb 4.3 1.7 0.93 0.60 0.40 0.32 Heart wall 2.4 1.2 0.70 0.44 0.29 0.22 Pancreas 2.2 0.68 0.33 0.25 0.13 0.096 Spleen 2.2 0.84 0.46 0.29 0.19 0.14 Lungs 0.96 0.38 0.20 0.13 0.092 0.064 Kidneys 0.81 0.34 0.19 0.13 0.089 0.074 Ovaries 0.80 0.8 0.19 0.11 0.058 0.053 Uterus 0.79 0.35 0.19 0.12 0.076 0.062 LLI wall * 0.69 0.28 0.15 0.097 0.060 0.051 Liver 0.69 0.31 0.17 0.11 0.076 0.058 Gallbladder wall 0.69 0.26 0.14 0.093 0.059 0.049 Small intestine 0.68 0.29 0.15 0.096 0.060 0.047 ULI wall ** 0.67 0.27 0.15 0.090 0.057 0.046 Stomach wall 0.65 0.27 0.14 0.089 0.057 0.047 Adrenals 0.65 0.28 0.15 0.095 0.061 0.048 Testes 0.64 0.27 0.14 0.085 0.052 0.041 Red marrow 0.62 0.26 0.14 0.089 0.057 0.047 Thymus 0.61 0.26 0.14 0.086 0.056 0.044 Thyroid 0.61 0.26 0.13 0.080 0.049 0.039 Muscle 0.58 0.25 0.13 0.078 0.049 0.039 Bone surface 0.57 0.24 0.12 0.079 0.052 0.041 Breast 0.54 0.22 0.11 0.068 0.043 0.034 Skin 0.49 0.20 0.10 0.060 0.037 0.030 Brain 0.29 0.13 0.09 0.078 0.072 0.070 Other tissues 0.59 0.25 0.13 0.083 0.052 0.042a MIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al.1 and Jones et al.2
b The dynamic bladder model with a uniform voiding frequency of 1.5 hours was used. *LLI = lower large intestine; **ULI = upper large intestine
2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons.
Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides.
Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description (11.2)].
The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose.
Aseptically withdraw Fludeoxyglucose F18 Injection from its container.
Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit.
Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations.
Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration.
Acquire static emission images 30 to 100 minutes from the time of injection. -
Washington University School Of Medicine
Fludeoxyglucose F 18 | Washington University School Of Medicine
Fludeoxyglucose F18 USP Injection emits radiation. Use procedures to minimize radiation exposure. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [ see Description (11.2)].
2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 – 10 mCi (185 – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [ see Use in Special Populations (8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration.Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study.
Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [ see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug’s injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injectiona Organ
Newborn
(3.4kg)
1-year old
(9.8kg)
5-year old
(19kg) 10-year old
(32kg) 15-year old
(57kg) Adult
(70kg)
Bladder wallb 4.3
1.7
0.93
0.60
0.40
0.32
Heart wall
2.4
1.2
0.70
0.44
0.29
0.22
Pancreas
2.2
0.68
0.33
0.25
0.13
0.096
Spleen
2.2
0.84
0.46
0.29
0.19
0.14
Lungs
0.96
0.38
0.20
0.13
0.092
0.064
Kidneys
0.81
0.34
0.19
0.13
0.089
0.074
Ovaries
0.80
0.8
0.19
0.11
0.058
0.053
Uterus
0.79
0.35
0.19
0.12
0.076
0.062
LLI wall*
0.69
0.28
0.15
0.097
0.060
0.051
Liver
0.69
0.31
0.17
0.11
0.076
0.058
Gallbladder wall
0.69
0.26
0.14
0.093
0.059
0.049
Small intestine
0.68
0.29
0.15
0.096
0.060
0.047
ULI wall**
0.67
0.27
0.15
0.090
0.057
0.046
Stomach wall
0.65
0.27
0.14
0.089
0.057
0.047
Adrenals
0.65
0.28
0.15
0.095
0.061
0.048
Testes
0.64
0.27
0.14
0.085
0.052
0.041
Red marrow
0.62
0.26
0.14
0.089
0.057
0.047
Thymus
0.61
0.26
0.14
0.086
0.056
0.044
Thyroid
0.61
0.26
0.13
0.080
0.049
0.039
Muscle 0.058
0.25
0.13
0.078
0.049
0.039
Bone surface 0.57
0.24
0.12
0.079
0.052
0.041
Breast 0.54
0.22
0.11
0.068
0.043
0.034
Skin 0.49
0.20
0.10
0.060
0.037
0.030
Brain 0.29
0.13
0.09
0.078
0.072
0.070
Other tissues 0.59
0.25
0.13
0.083
0.052
0.042
aMIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al.1 and Jones et al.2bThe dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.
*LLI = lower large intestine; **ULI = upper large intestine
2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [ see Description (11.2)]. The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection from its container. Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration. Acquire static emission images 30 – 100 minutes from the time of injection. 2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 – 10 mCi (185 – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [ see Use in Special Populations (8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration.Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study.
Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [ see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug’s injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injectiona Organ
Newborn
(3.4kg)
1-year old
(9.8kg)
5-year old
(19kg) 10-year old
(32kg) 15-year old
(57kg) Adult
(70kg)
Bladder wallb 4.3
1.7
0.93
0.60
0.40
0.32
Heart wall
2.4
1.2
0.70
0.44
0.29
0.22
Pancreas
2.2
0.68
0.33
0.25
0.13
0.096
Spleen
2.2
0.84
0.46
0.29
0.19
0.14
Lungs
0.96
0.38
0.20
0.13
0.092
0.064
Kidneys
0.81
0.34
0.19
0.13
0.089
0.074
Ovaries
0.80
0.8
0.19
0.11
0.058
0.053
Uterus
0.79
0.35
0.19
0.12
0.076
0.062
LLI wall*
0.69
0.28
0.15
0.097
0.060
0.051
Liver
0.69
0.31
0.17
0.11
0.076
0.058
Gallbladder wall
0.69
0.26
0.14
0.093
0.059
0.049
Small intestine
0.68
0.29
0.15
0.096
0.060
0.047
ULI wall**
0.67
0.27
0.15
0.090
0.057
0.046
Stomach wall
0.65
0.27
0.14
0.089
0.057
0.047
Adrenals
0.65
0.28
0.15
0.095
0.061
0.048
Testes
0.64
0.27
0.14
0.085
0.052
0.041
Red marrow
0.62
0.26
0.14
0.089
0.057
0.047
Thymus
0.61
0.26
0.14
0.086
0.056
0.044
Thyroid
0.61
0.26
0.13
0.080
0.049
0.039
Muscle 0.058
0.25
0.13
0.078
0.049
0.039
Bone surface 0.57
0.24
0.12
0.079
0.052
0.041
Breast 0.54
0.22
0.11
0.068
0.043
0.034
Skin 0.49
0.20
0.10
0.060
0.037
0.030
Brain 0.29
0.13
0.09
0.078
0.072
0.070
Other tissues 0.59
0.25
0.13
0.083
0.052
0.042
aMIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al.1 and Jones et al.2bThe dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.
*LLI = lower large intestine; **ULI = upper large intestine
2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [ see Description (11.2)]. The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection from its container. Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration. Acquire static emission images 30 – 100 minutes from the time of injection. -
University Of California, Los Angeles
Fludeoxyglucose F 18 | University Of California, Los Angeles
Fludeoxyglucose F18 Injection emits radiation. Use procedures to minimize radiation exposure. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description(11.2)].
2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 – 10 mCi (185 – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [see Use in Special Populations(8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration. Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study. Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [see Warnings and Precautions(5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug’s injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injection * Organ Newborn
(3.4 kg) 1-year old
(9.8 kg) 5-year old
(19 kg) 10-year old
(32 kg) 15-year old
(57 kg) Adult
(70 kg) * MIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al.1 and Jones et al.2 † The dynamic bladder model with a uniform voiding frequency of 1.5 hours was used. ‡ LLI = lower large intestine; § ULI = upper large intestine Bladder wall† 4.3 1.7 0.93 0.60 0.40 0.32 Heart wall 2.4 1.2 0.70 0.44 0.29 0.22 Pancreas 2.2 0.68 0.33 0.25 0.13 0.096 Spleen 2.2 0.84 0.46 0.29 0.19 0.14 Lungs 0.96 0.38 0.20 0.13 0.092 0.064 Kidneys 0.81 0.34 0.19 0.13 0.089 0.074 Ovaries 0.80 0.8 0.19 0.11 0.058 0.053 Uterus 0.79 0.35 0.19 0.12 0.076 0.062 LLI wall‡ 0.69 0.28 0.15 0.097 0.060 0.051 Liver 0.69 0.31 0.17 0.11 0.076 0.058 Gallbladder wall 0.69 0.26 0.14 0.093 0.059 0.049 Small intestine 0.68 0.29 0.15 0.096 0.060 0.047 ULI wall§ 0.67 0.27 0.15 0.090 0.057 0.046 Stomach wall 0.65 0.27 0.14 0.089 0.057 0.047 Adrenals 0.65 0.28 0.15 0.095 0.061 0.048 Testes 0.64 0.27 0.14 0.085 0.052 0.041 Red marrow 0.62 0.26 0.14 0.089 0.057 0.047 Thymus 0.61 0.26 0.14 0.086 0.056 0.044 Thyroid 0.61 0.26 0.13 0.080 0.049 0.039 Muscle 0.58 0.25 0.13 0.078 0.049 0.039 Bone surface 0.57 0.24 0.12 0.079 0.052 0.041 Breast 0.54 0.22 0.11 0.068 0.043 0.034 Skin 0.49 0.20 0.10 0.060 0.037 0.030 Brain 0.29 0.13 0.09 0.078 0.072 0.070 Other tissues 0.59 0.25 0.13 0.083 0.052 0.042 2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description (11.2)]. The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection from its container. Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration. Acquire static emission images 30 – 100 minutes from the time of injection. -
Uihc-p E T Imaging Center
Fludeoxyglucose F 18 | Uihc-p E T Imaging Center
Fludeoxyglucose F18 Injection emits radiation. Use procedures to minimize radiation exposure. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [ see Description (11.2)].
2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 – 10 mCi (185 – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [ see Use in Special Populations (8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration.Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study. Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [ see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug’s injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injection* Organ Newborn
(3.4kg) 1-year old
(9.8kg) 5-year old
(19kg) 10-year old
(32kg) 15-year old
(57kg) Adult
(70kg) Bladder wall† 4.3 1.7 0.93 0.60 0.40 0.32 Heart wall 2.4 1.2 0.70 0.44 0.29 0.22 Pancreas 2.2 0.68 0.33 0.25 0.13 0.096 Spleen 2.2 0.84 0.46 0.29 0.19 0.14 Lungs 0.96 0.38 0.20 0.13 0.092 0.064 Kidneys 0.81 0.34 0.19 0.13 0.089 0.074 Ovaries 0.80 0.8 0.19 0.11 0.058 0.053 Uterus 0.79 0.35 0.19 0.12 0.076 0.062 LLI wall‡ 0.69 0.28 0.15 0.097 0.060 0.051 Liver 0.69 0.31 0.17 0.11 0.076 0.058 Gallbladder wall 0.69 0.26 0.14 0.093 0.059 0.049 Small intestine 0.68 0.29 0.15 0.096 0.060 0.047 ULI wall§ 0.67 0.27 0.15 0.090 0.057 0.046 Stomach wall 0.65 0.27 0.14 0.089 0.057 0.047 Adrenals 0.65 0.28 0.15 0.095 0.061 0.048 Testes 0.64 0.27 0.14 0.085 0.052 0.041 Red marrow 0.62 0.26 0.14 0.089 0.057 0.047 Thymus 0.61 0.26 0.14 0.086 0.056 0.044 Thyroid 0.61 0.26 0.13 0.080 0.049 0.039 Muscle 0.058 0.25 0.13 0.078 0.049 0.039 Bone surface 0.57 0.24 0.12 0.079 0.052 0.041 Breast 0.54 0.22 0.11 0.068 0.043 0.034 Skin 0.49 0.20 0.10 0.060 0.037 0.030 Brain 0.29 0.13 0.09 0.078 0.072 0.070 Other tissues 0.59 0.25 0.13 0.083 0.052 0.042*MIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al.1 and Jones et al.2
†The dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.
‡LLI = lower large intestine;
§ULI = upper large intestine
2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [ see Description (11.2)]. The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection from its container. Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration. Acquire static emission images 30 – 100 minutes from the time of injection. 2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 – 10 mCi (185 – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [ see Use in Special Populations (8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration.Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study. Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [ see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug’s injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injection* Organ Newborn
(3.4kg) 1-year old
(9.8kg) 5-year old
(19kg) 10-year old
(32kg) 15-year old
(57kg) Adult
(70kg) Bladder wall† 4.3 1.7 0.93 0.60 0.40 0.32 Heart wall 2.4 1.2 0.70 0.44 0.29 0.22 Pancreas 2.2 0.68 0.33 0.25 0.13 0.096 Spleen 2.2 0.84 0.46 0.29 0.19 0.14 Lungs 0.96 0.38 0.20 0.13 0.092 0.064 Kidneys 0.81 0.34 0.19 0.13 0.089 0.074 Ovaries 0.80 0.8 0.19 0.11 0.058 0.053 Uterus 0.79 0.35 0.19 0.12 0.076 0.062 LLI wall‡ 0.69 0.28 0.15 0.097 0.060 0.051 Liver 0.69 0.31 0.17 0.11 0.076 0.058 Gallbladder wall 0.69 0.26 0.14 0.093 0.059 0.049 Small intestine 0.68 0.29 0.15 0.096 0.060 0.047 ULI wall§ 0.67 0.27 0.15 0.090 0.057 0.046 Stomach wall 0.65 0.27 0.14 0.089 0.057 0.047 Adrenals 0.65 0.28 0.15 0.095 0.061 0.048 Testes 0.64 0.27 0.14 0.085 0.052 0.041 Red marrow 0.62 0.26 0.14 0.089 0.057 0.047 Thymus 0.61 0.26 0.14 0.086 0.056 0.044 Thyroid 0.61 0.26 0.13 0.080 0.049 0.039 Muscle 0.058 0.25 0.13 0.078 0.049 0.039 Bone surface 0.57 0.24 0.12 0.079 0.052 0.041 Breast 0.54 0.22 0.11 0.068 0.043 0.034 Skin 0.49 0.20 0.10 0.060 0.037 0.030 Brain 0.29 0.13 0.09 0.078 0.072 0.070 Other tissues 0.59 0.25 0.13 0.083 0.052 0.042*MIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al.1 and Jones et al.2
†The dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.
‡LLI = lower large intestine;
§ULI = upper large intestine
2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [ see Description (11.2)]. The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection from its container. Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration. Acquire static emission images 30 – 100 minutes from the time of injection. -
The General Hospital Corporation
Fludeoxyglucose F 18 | The General Hospital Corporation
Fludeoxyglucose F18 Injection emits radiation. Use procedures to minimize radiation exposure. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description (11.2)].
2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 – 10 mCi (185 – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi (96.2 MBq), as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [see Use in Special Populations (8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration. Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study. Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug's injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injection Organ Newborn (3.4 kg) 1-year old (9.8 kg) 5-year old (19 kg) 10-year old (32 kg) 15-year old (57 kg) Adult (70 kg) Bladder wall 4.3 1.7 0.93 0.60 0.40 0.32 Heart wall 2.4 1.2 0.70 0.44 0.29 0.22 Pancreas 2.2 0.68 0.33 0.25 0.13 0.096 Spleen 2.2 0.84 0.46 0.29 0.19 0.14 Lungs 0.96 0.38 0.20 0.13 0.092 0.064 Kidneys 0.81 0.34 0.19 0.13 0.089 0.074 Ovaries 0.80 0.8 0.19 0.11 0.058 0.053 Uterus 0.79 0.35 0.19 0.12 0.076 0.062 LLI wall 0.69 0.28 0.15 0.097 0.060 0.051 Liver 0.69 0.31 0.17 0.11 0.076 0.058 Gallbladder wall 0.69 0.26 0.14 0.093 0.059 0.049 Small intestine 0.68 0.29 0.15 0.096 0.060 0.047 ULI wall 0.67 0.27 0.15 0.090 0.057 0.046 Stomach wall 0.65 0.27 0.14 0.089 0.057 0.047 Adrenals 0.65 0.28 0.15 0.095 0.061 0.048 Testes 0.64 0.27 0.14 0.085 0.052 0.041 Red marrow 0.62 0.26 0.14 0.089 0.057 0.047 Thymus 0.61 0.26 0.14 0.086 0.056 0.044 Thyroid 0.61 0.26 0.13 0.080 0.049 0.039 Muscle 0.58 0.25 0.13 0.078 0.049 0.039 Bone surface 0.57 0.24 0.12 0.079 0.052 0.041 Breast 0.54 0.22 0.11 0.068 0.043 0.034 Skin 0.49 0.20 0.10 0.060 0.037 0.030 Brain 0.29 0.13 0.09 0.078 0.072 0.070 Other tissues 0.59 0.25 0.13 0.083 0.052 0.042aMIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al.1 and Jones et al.2bThe dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.
*LLI = lower large intestine; **ULI = upper large intestine
2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description (11.2)]. The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection from its container. Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration. Acquire static emission images 30 – 100 minutes from the time of injection.
Login To Your Free Account