FDA records indicate that there are no current recalls for this drug.
Are you a medical professional?
Trending Topics
Fludeoxyglucose F18 Recall
Get an alert when a recall is issued.
Questions & Answers
Side Effects & Adverse Reactions
There is currently no warning information available for this product. We apologize for any inconvenience.
Legal Issues
There is currently no legal information available for this drug.
FDA Safety Alerts
There are currently no FDA safety alerts available for this drug.
Manufacturer Warnings
There is currently no manufacturer warning information available for this drug.
FDA Labeling Changes
There are currently no FDA labeling changes available for this drug.
Uses
Fludeoxyglucose F18 Injection is indicated for positron emission tomography (PET) imaging in the following settings:
For assessment of abnormal glucose metabolism to assist in the evaluation of malignancy in patients with known or suspected abnormalities found by other testing modalities, or in patients with an existing diagnosis of cancer.
For the identification of left ventricular myocardium with residual glucose metabolism and reversible loss of systolic function in patients with coronary artery disease and left ventricular dysfunction, when used together with myocardial perfusion imaging.
For the identification of regions of abnormal glucose metabolism associated with foci of epileptic seizures.
For assessment of abnormal glucose metabolism to assist in the evaluation of malignancy in patients with known or suspected abnormalities found by other testing modalities, or in patients with an existing diagnosis of cancer.
1.2 CardiologyFor the identification of left ventricular myocardium with residual glucose metabolism and reversible loss of systolic function in patients with coronary artery disease and left ventricular dysfunction, when used together with myocardial perfusion imaging.
1.3 NeurologyFor the identification of regions of abnormal glucose metabolism associated with foci of epileptic seizures.
History
There is currently no drug history available for this drug.
Other Information
Fludeoxyglucose F 18 Injection is a positron emitting radiopharmaceutical that is used for diagnostic purposes in conjunction with positron emission tomography (PET) imaging. The active ingredient 2-deoxy-2-[18F]fluoro-D-glucose has the molecular formula of C6H1118FO5 with a molecular weight of 181.26, and has the following chemical structure:
Fludeoxyglucose F 18 Injection is provided as a ready to use sterile, pyrogen free, clear, colorless citrate buffered solution. Each mL contains between 0.740 to 11.1GBq (20-400 mCi) of 2-deoxy-2-[18F]fluoro-D-glucose at the EOS, 4.5 mg of sodium chloride in citrate buffer. The pH of the solution is between 4.5 and 7.5. The solution is packaged in a multiple-dose glass vial and does not contain any preservative.
Fluorine F 18 has a physical half-life of 109.7 minutes and decays to Oxygen O 18 (stable) by positron decay. The principal photons useful for imaging are the dual 511 keV “annihilation” gamma photons that are produced and emitted simultaneously in opposite directions when the positron interacts with an electron (Table 2).
Radiation/Emission | % Per Disintegration | Mean Energy |
Positron(β+) | 96.73 | 249.8 keV |
Gamma(±)* | 193.46 | 511.0 keV |
*Produced by positron annihilation
From: Kocher, D.C. Radioactive Decay Tables DOE/TIC-I 1026, 89 (1981)
The specific gamma ray constant (point source air kerma coefficient) for fluorine F 18 is 5.7 R/hr/mCi (1.35 x 10 -6 Gy/hr/kBq) at 1 cm. The half-value layer (HVL) for the 511 keV photons is 4 mm lead (Pb). The range of attenuation coefficients for this radionuclide as a function of lead shield thickness is shown in Table 3. For example, the interposition of an 8 mm thickness of Pb, with a coefficient of attenuation of 0.25, will decrease the external radiation by 75%.
Shield thickness (Pb) mm | Coefficient of attenuation |
0 |
0.00 |
4 |
0.50 |
8 |
0.25 |
13 |
0.10 |
26 |
0.01 |
39 |
0.001 |
52 |
0.0001 |
For use in correcting for physical decay of this radionuclide, the fractions remaining at selected intervals after calibration are shown in Table 4.
Minutes | Fraction Remaining |
0* |
1.000 |
15 |
0.909 |
30 |
0.826 |
60 |
0.683 |
110 |
0.500 |
220 |
0.250 |
*calibration time
Fludeoxyglucose F 18 Injection is a positron emitting radiopharmaceutical that is used for diagnostic purposes in conjunction with positron emission tomography (PET) imaging. The active ingredient 2-deoxy-2-[18F]fluoro-D-glucose has the molecular formula of C6H1118FO5 with a molecular weight of 181.26, and has the following chemical structure:
Fludeoxyglucose F 18 Injection is provided as a ready to use sterile, pyrogen free, clear, colorless citrate buffered solution. Each mL contains between 0.740 to 11.1GBq (20-400 mCi) of 2-deoxy-2-[18F]fluoro-D-glucose at the EOS, 4.5 mg of sodium chloride in citrate buffer. The pH of the solution is between 4.5 and 7.5. The solution is packaged in a multiple-dose glass vial and does not contain any preservative.
11.2 Physical CharacteristicsFluorine F 18 has a physical half-life of 109.7 minutes and decays to Oxygen O 18 (stable) by positron decay. The principal photons useful for imaging are the dual 511 keV “annihilation” gamma photons that are produced and emitted simultaneously in opposite directions when the positron interacts with an electron (Table 2).
Radiation/Emission | % Per Disintegration | Mean Energy |
Positron(β+) | 96.73 | 249.8 keV |
Gamma(±)* | 193.46 | 511.0 keV |
*Produced by positron annihilation
From: Kocher, D.C. Radioactive Decay Tables DOE/TIC-I 1026, 89 (1981)
The specific gamma ray constant (point source air kerma coefficient) for fluorine F 18 is 5.7 R/hr/mCi (1.35 x 10 -6 Gy/hr/kBq) at 1 cm. The half-value layer (HVL) for the 511 keV photons is 4 mm lead (Pb). The range of attenuation coefficients for this radionuclide as a function of lead shield thickness is shown in Table 3. For example, the interposition of an 8 mm thickness of Pb, with a coefficient of attenuation of 0.25, will decrease the external radiation by 75%.
Shield thickness (Pb) mm | Coefficient of attenuation |
0 |
0.00 |
4 |
0.50 |
8 |
0.25 |
13 |
0.10 |
26 |
0.01 |
39 |
0.001 |
52 |
0.0001 |
For use in correcting for physical decay of this radionuclide, the fractions remaining at selected intervals after calibration are shown in Table 4.
Minutes | Fraction Remaining |
0* |
1.000 |
15 |
0.909 |
30 |
0.826 |
60 |
0.683 |
110 |
0.500 |
220 |
0.250 |
*calibration time
Sources
Fludeoxyglucose F18 Manufacturers
-
The Feinstein Institute For Medical Research
Fludeoxyglucose F18 | The Feinstein Institute For Medical Research
Fludeoxyglucose F18 Injection emits radiation. Use procedures to minimize radiation exposure. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [ see Description (11.2)].
2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 – 10 mCi (185 – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [ see Use in Special Populations (8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration.Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study.
Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [ see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug’s injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injectiona Organ Newborn
(3.4kg) 1-year old
(9.8kg) 5-year old
(19kg) 10-year old
(32kg) 15-year old
(57kg) Adult
(70kg) Bladder wallb 4.3 1.7 0.93 0.60 0.40 0.32 Heart wall 2.4 1.2 0.70 0.44 0.29 0.22 Pancreas 2.2 0.68 0.33 0.25 0.13 0.096 Spleen 2.2 0.84 0.46 0.29 0.19 0.14 Lungs 0.96 0.38 0.20 0.13 0.092 0.064 Kidneys 0.81 0.34 0.19 0.13 0.089 0.074 Ovaries 0.80 0.8 0.19 0.11 0.058 0.053 Uterus 0.79 0.35 0.19 0.12 0.076 0.062 LLI wall* 0.69 0.28 0.15 0.097 0.060 0.051 Liver 0.69 0.31 0.17 0.11 0.076 0.058 Gallbladder wall 0.69 0.26 0.14 0.093 0.059 0.049 Small intestine 0.68 0.29 0.15 0.096 0.060 0.047 ULI wall** 0.67 0.27 0.15 0.090 0.057 0.046 Stomach wall 0.65 0.27 0.14 0.089 0.057 0.047 Adrenals 0.65 0.28 0.15 0.095 0.061 0.048 Testes 0.64 0.27 0.14 0.085 0.052 0.041 Red marrow 0.62 0.26 0.14 0.089 0.057 0.047 Thymus 0.61 0.26 0.14 0.086 0.056 0.044 Thyroid 0.61 0.26 0.13 0.080 0.049 0.039 Muscle 0.058 0.25 0.13 0.078 0.049 0.039 Bone surface 0.57 0.24 0.12 0.079 0.052 0.041 Breast 0.54 0.22 0.11 0.068 0.043 0.034 Skin 0.49 0.20 0.10 0.060 0.037 0.030 Brain 0.29 0.13 0.09 0.078 0.072 0.070 Other tissues 0.59 0.25 0.13 0.083 0.052 0.042aMIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al.1 and Jones et al.2bThe dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.
2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [ see Description (11.2)]. The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection from its container. Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration. Acquire static emission images 30 – 100 minutes from the time of injection. 2.1 Recommended Dose for Adults
*LLI = lower large intestine; **ULI = upper large intestineWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 – 10 mCi (185 – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [ see Use in Special Populations (8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration.Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study.
Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [ see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug’s injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injectiona Organ Newborn
(3.4kg) 1-year old
(9.8kg) 5-year old
(19kg) 10-year old
(32kg) 15-year old
(57kg) Adult
(70kg) Bladder wallb 4.3 1.7 0.93 0.60 0.40 0.32 Heart wall 2.4 1.2 0.70 0.44 0.29 0.22 Pancreas 2.2 0.68 0.33 0.25 0.13 0.096 Spleen 2.2 0.84 0.46 0.29 0.19 0.14 Lungs 0.96 0.38 0.20 0.13 0.092 0.064 Kidneys 0.81 0.34 0.19 0.13 0.089 0.074 Ovaries 0.80 0.8 0.19 0.11 0.058 0.053 Uterus 0.79 0.35 0.19 0.12 0.076 0.062 LLI wall* 0.69 0.28 0.15 0.097 0.060 0.051 Liver 0.69 0.31 0.17 0.11 0.076 0.058 Gallbladder wall 0.69 0.26 0.14 0.093 0.059 0.049 Small intestine 0.68 0.29 0.15 0.096 0.060 0.047 ULI wall** 0.67 0.27 0.15 0.090 0.057 0.046 Stomach wall 0.65 0.27 0.14 0.089 0.057 0.047 Adrenals 0.65 0.28 0.15 0.095 0.061 0.048 Testes 0.64 0.27 0.14 0.085 0.052 0.041 Red marrow 0.62 0.26 0.14 0.089 0.057 0.047 Thymus 0.61 0.26 0.14 0.086 0.056 0.044 Thyroid 0.61 0.26 0.13 0.080 0.049 0.039 Muscle 0.058 0.25 0.13 0.078 0.049 0.039 Bone surface 0.57 0.24 0.12 0.079 0.052 0.041 Breast 0.54 0.22 0.11 0.068 0.043 0.034 Skin 0.49 0.20 0.10 0.060 0.037 0.030 Brain 0.29 0.13 0.09 0.078 0.072 0.070 Other tissues 0.59 0.25 0.13 0.083 0.052 0.042aMIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al.1 and Jones et al.2bThe dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.
2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [ see Description (11.2)]. The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection from its container. Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration. Acquire static emission images 30 – 100 minutes from the time of injection.
*LLI = lower large intestine; **ULI = upper large intestine -
The Methodist Hospital Research Institute
-
Biomedical Research Foundation Of Northwest Louisiana
Fludeoxyglucose F18 | Biomedical Research Foundation Of Northwest Louisiana
Fludeoxyglucose F18 Injection emits radiation. Use procedures to minimize radiation exposure. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description(11.2)].
2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 – 10 mCi (185 – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [see Use in Special Populations(8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration. Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study. Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [see Warnings and Precautions(5.2)]. Prior to Fludeoxyglucose F18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug's injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F18 Injection * Organ Newborn
(3.4 kg) 1-year old
(9.8 kg) 5-year old
(19 kg) 10-year old
(32 kg) 15-year old
(57 kg) Adult
(70 kg) * MIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al.1 and Jones et al.2 † The dynamic bladder model with a uniform voiding frequency of 1.5 hours was used. ‡ LLI = lower large intestine; § ULI = upper large intestine Bladder wall† 4.3 1.7 0.93 0.60 0.40 0.32 Heart wall 2.4 1.2 0.70 0.44 0.29 0.22 Pancreas 2.2 0.68 0.33 0.25 0.13 0.096 Spleen 2.2 0.84 0.46 0.29 0.19 0.14 Lungs 0.96 0.38 0.20 0.13 0.092 0.064 Kidneys 0.81 0.34 0.19 0.13 0.089 0.074 Ovaries 0.80 0.8 0.19 0.11 0.058 0.053 Uterus 0.79 0.35 0.19 0.12 0.076 0.062 LLI wall‡ 0.69 0.28 0.15 0.097 0.060 0.051 Liver 0.69 0.31 0.17 0.11 0.076 0.058 Gallbladder wall 0.69 0.26 0.14 0.093 0.059 0.049 Small intestine 0.68 0.29 0.15 0.096 0.060 0.047 ULI wall§ 0.67 0.27 0.15 0.090 0.057 0.046 Stomach wall 0.65 0.27 0.14 0.089 0.057 0.047 Adrenals 0.65 0.28 0.15 0.095 0.061 0.048 Testes 0.64 0.27 0.14 0.085 0.052 0.041 Red marrow 0.62 0.26 0.14 0.089 0.057 0.047 Thymus 0.61 0.26 0.14 0.086 0.056 0.044 Thyroid 0.61 0.26 0.13 0.080 0.049 0.039 Muscle 0.58 0.25 0.13 0.078 0.049 0.039 Bone surface 0.57 0.24 0.12 0.079 0.052 0.041 Breast 0.54 0.22 0.11 0.068 0.043 0.034 Skin 0.49 0.20 0.10 0.060 0.037 0.030 Brain 0.29 0.13 0.09 0.078 0.072 0.070 Other tissues 0.59 0.25 0.13 0.083 0.052 0.042 2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description (11.2)]. The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection from its container. Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F18 Injection within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F18 Injection administration. Acquire static emission images 30 – 100 minutes from the time of injection. -
Biomedical Research Foundation Of Northwest Louisiana
Fludeoxyglucose F18 | Biomedical Research Foundation Of Northwest Louisiana
Fludeoxyglucose F18 Injection emits radiation. Use procedures to minimize radiation exposure. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description(11.2)].
2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 to 10 mCi (185 to 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [see Use in Special Populations(8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration. Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study. Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [see Warnings and Precautions(5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 to 6 hours prior to the drug's injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 to 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injection * Organ Newborn
(3.4 kg) 1-year old
(9.8 kg) 5-year old
(19 kg) 10-year old
(32 kg) 15-year old
(57 kg) Adult
(70 kg) * MIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al.1 and Jones et al.2 † The dynamic bladder model with a uniform voiding frequency of 1.5 hours was used. ‡ LLI = lower large intestine; § ULI = upper large intestine Bladder wall† 4.3 1.7 0.93 0.60 0.40 0.32 Heart wall 2.4 1.2 0.70 0.44 0.29 0.22 Pancreas 2.2 0.68 0.33 0.25 0.13 0.096 Spleen 2.2 0.84 0.46 0.29 0.19 0.14 Lungs 0.96 0.38 0.20 0.13 0.092 0.064 Kidneys 0.81 0.34 0.19 0.13 0.089 0.074 Ovaries 0.80 0.8 0.19 0.11 0.058 0.053 Uterus 0.79 0.35 0.19 0.12 0.076 0.062 LLI wall‡ 0.69 0.28 0.15 0.097 0.060 0.051 Liver 0.69 0.31 0.17 0.11 0.076 0.058 Gallbladder wall 0.69 0.26 0.14 0.093 0.059 0.049 Small intestine 0.68 0.29 0.15 0.096 0.060 0.047 ULI wall§ 0.67 0.27 0.15 0.090 0.057 0.046 Stomach wall 0.65 0.27 0.14 0.089 0.057 0.047 Adrenals 0.65 0.28 0.15 0.095 0.061 0.048 Testes 0.64 0.27 0.14 0.085 0.052 0.041 Red marrow 0.62 0.26 0.14 0.089 0.057 0.047 Thymus 0.61 0.26 0.14 0.086 0.056 0.044 Thyroid 0.61 0.26 0.13 0.080 0.049 0.039 Muscle 0.58 0.25 0.13 0.078 0.049 0.039 Bone surface 0.57 0.24 0.12 0.079 0.052 0.041 Breast 0.54 0.22 0.11 0.068 0.043 0.034 Skin 0.49 0.20 0.10 0.060 0.037 0.030 Brain 0.29 0.13 0.09 0.078 0.072 0.070 Other tissues 0.59 0.25 0.13 0.083 0.052 0.042 2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description (11.2)]. The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. The maximum injected volume of a single patient dose could be 29.5 mL, based on a minimum labeled radio-concentration of 20 mCi/mL at 12 hours from the end of synthesis. Aseptically withdraw Fludeoxyglucose F18 Injection from its container. Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration. Acquire static emission images 30 – 100 minutes from the time of injection. -
The Feinstein Institute For Medical Research
Fludeoxyglucose F18 | The Feinstein Institute For Medical Research
Fludeoxyglucose F18 Injection emits radiation. Use procedures to minimize radiation exposure. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [ see Description (11.2)].
2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 – 10 mCi (185 – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [ see Use in Special Populations (8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration.Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study.
Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [ see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug’s injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injectiona Organ
Newborn
(3.4kg)
1-year old
(9.8kg)
5-year old
(19kg) 10-year old
(32kg) 15-year old
(57kg) Adult
(70kg)
Bladder wallb 4.3
1.7
0.93
0.60
0.40
0.32
Heart wall
2.4
1.2
0.70
0.44
0.29
0.22
Pancreas
2.2
0.68
0.33
0.25
0.13
0.096
Spleen
2.2
0.84
0.46
0.29
0.19
0.14
Lungs
0.96
0.38
0.20
0.13
0.092
0.064
Kidneys
0.81
0.34
0.19
0.13
0.089
0.074
Ovaries
0.80
0.8
0.19
0.11
0.058
0.053
Uterus
0.79
0.35
0.19
0.12
0.076
0.062
LLI wall*
0.69
0.28
0.15
0.097
0.060
0.051
Liver
0.69
0.31
0.17
0.11
0.076
0.058
Gallbladder wall
0.69
0.26
0.14
0.093
0.059
0.049
Small intestine
0.68
0.29
0.15
0.096
0.060
0.047
ULI wall**
0.67
0.27
0.15
0.090
0.057
0.046
Stomach wall
0.65
0.27
0.14
0.089
0.057
0.047
Adrenals
0.65
0.28
0.15
0.095
0.061
0.048
Testes
0.64
0.27
0.14
0.085
0.052
0.041
Red marrow
0.62
0.26
0.14
0.089
0.057
0.047
Thymus
0.61
0.26
0.14
0.086
0.056
0.044
Thyroid
0.61
0.26
0.13
0.080
0.049
0.039
Muscle 0.058
0.25
0.13
0.078
0.049
0.039
Bone surface 0.57
0.24
0.12
0.079
0.052
0.041
Breast 0.54
0.22
0.11
0.068
0.043
0.034
Skin 0.49
0.20
0.10
0.060
0.037
0.030
Brain 0.29
0.13
0.09
0.078
0.072
0.070
Other tissues 0.59
0.25
0.13
0.083
0.052
0.042
aMIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al. 1 and Jones et al. 2 bThe dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.
*LLI = lower large intestine; **ULI = upper large intestine 2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [ see Description (11.2)]. The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection from its container. Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration. Acquire static emission images 30 – 100 minutes from the time of injection. 2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 – 10 mCi (185 – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [ see Use in Special Populations (8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration.Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study.
Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [ see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug’s injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injectiona Organ
Newborn
(3.4kg)
1-year old
(9.8kg)
5-year old
(19kg) 10-year old
(32kg) 15-year old
(57kg) Adult
(70kg)
Bladder wallb 4.3
1.7
0.93
0.60
0.40
0.32
Heart wall
2.4
1.2
0.70
0.44
0.29
0.22
Pancreas
2.2
0.68
0.33
0.25
0.13
0.096
Spleen
2.2
0.84
0.46
0.29
0.19
0.14
Lungs
0.96
0.38
0.20
0.13
0.092
0.064
Kidneys
0.81
0.34
0.19
0.13
0.089
0.074
Ovaries
0.80
0.8
0.19
0.11
0.058
0.053
Uterus
0.79
0.35
0.19
0.12
0.076
0.062
LLI wall*
0.69
0.28
0.15
0.097
0.060
0.051
Liver
0.69
0.31
0.17
0.11
0.076
0.058
Gallbladder wall
0.69
0.26
0.14
0.093
0.059
0.049
Small intestine
0.68
0.29
0.15
0.096
0.060
0.047
ULI wall**
0.67
0.27
0.15
0.090
0.057
0.046
Stomach wall
0.65
0.27
0.14
0.089
0.057
0.047
Adrenals
0.65
0.28
0.15
0.095
0.061
0.048
Testes
0.64
0.27
0.14
0.085
0.052
0.041
Red marrow
0.62
0.26
0.14
0.089
0.057
0.047
Thymus
0.61
0.26
0.14
0.086
0.056
0.044
Thyroid
0.61
0.26
0.13
0.080
0.049
0.039
Muscle 0.058
0.25
0.13
0.078
0.049
0.039
Bone surface 0.57
0.24
0.12
0.079
0.052
0.041
Breast 0.54
0.22
0.11
0.068
0.043
0.034
Skin 0.49
0.20
0.10
0.060
0.037
0.030
Brain 0.29
0.13
0.09
0.078
0.072
0.070
Other tissues 0.59
0.25
0.13
0.083
0.052
0.042
aMIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al. 1 and Jones et al. 2 bThe dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.
*LLI = lower large intestine; **ULI = upper large intestine 2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [ see Description (11.2)]. The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection from its container. Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration. Acquire static emission images 30 – 100 minutes from the time of injection. -
Cyclotron Partners Lp Dba Cyclotope
Fludeoxyglucose F18 | Cyclotron Partners Lp Dba Cyclotope
Fludeoxyglucose F18 Injection emits radiation. Use procedures to minimize radiation exposure. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description(11.2)].
2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 – 10 mCi (185 – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [see Use in Special Populations(8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration. Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study. Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [see Warnings and Precautions(5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug’s injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injection * Organ Newborn
(3.4 kg) 1-year old
(9.8 kg) 5-year old
(19 kg) 10-year old
(32 kg) 15-year old
(57 kg) Adult
(70 kg) * MIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al.1 and Jones et al.2 † The dynamic bladder model with a uniform voiding frequency of 1.5 hours was used. ‡ LLI = lower large intestine; § ULI = upper large intestine Bladder wall† 4.3 1.7 0.93 0.60 0.40 0.32 Heart wall 2.4 1.2 0.70 0.44 0.29 0.22 Pancreas 2.2 0.68 0.33 0.25 0.13 0.096 Spleen 2.2 0.84 0.46 0.29 0.19 0.14 Lungs 0.96 0.38 0.20 0.13 0.092 0.064 Kidneys 0.81 0.34 0.19 0.13 0.089 0.074 Ovaries 0.80 0.8 0.19 0.11 0.058 0.053 Uterus 0.79 0.35 0.19 0.12 0.076 0.062 LLI wall‡ 0.69 0.28 0.15 0.097 0.060 0.051 Liver 0.69 0.31 0.17 0.11 0.076 0.058 Gallbladder wall 0.69 0.26 0.14 0.093 0.059 0.049 Small intestine 0.68 0.29 0.15 0.096 0.060 0.047 ULI wall§ 0.67 0.27 0.15 0.090 0.057 0.046 Stomach wall 0.65 0.27 0.14 0.089 0.057 0.047 Adrenals 0.65 0.28 0.15 0.095 0.061 0.048 Testes 0.64 0.27 0.14 0.085 0.052 0.041 Red marrow 0.62 0.26 0.14 0.089 0.057 0.047 Thymus 0.61 0.26 0.14 0.086 0.056 0.044 Thyroid 0.61 0.26 0.13 0.080 0.049 0.039 Muscle 0.58 0.25 0.13 0.078 0.049 0.039 Bone surface 0.57 0.24 0.12 0.079 0.052 0.041 Breast 0.54 0.22 0.11 0.068 0.043 0.034 Skin 0.49 0.20 0.10 0.060 0.037 0.030 Brain 0.29 0.13 0.09 0.078 0.072 0.070 Other tissues 0.59 0.25 0.13 0.083 0.052 0.042 2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description (11.2)]. The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection from its container. Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration. Acquire static emission images 30 – 100 minutes from the time of injection. -
Wisconsin Medical Cyclotron Llc
Fludeoxyglucose F18 | Wisconsin Medical Cyclotron Llc
Fludeoxyglucose F18 Injection, USP emits radiation. Use procedures to minimize radiation exposure. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description (11.2)].
2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 – 10 mCi (185 – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [see Use in Special Populations (8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration. Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study. Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug's injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F18 Injection, USP facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F18 Injection, USP are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F18 Injection, USP * Organ Newborn
(3.4 kg) 1-year old
(9.8 kg) 5-year old
(19 kg) 10-year old
(32 kg) 15-year old
(57 kg) Adult
(70 kg) * MIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al. 1 and Jones et al. 2 † The dynamic bladder model with a uniform voiding frequency of 1.5 hours was used. ‡ LLI = lower large intestine; § ULI = upper large intestine Bladder wall† 4.3 1.7 0.93 0.60 0.40 0.32 Heart wall 2.4 1.2 0.70 0.44 0.29 0.22 Pancreas 2.2 0.68 0.33 0.25 0.13 0.096 Spleen 2.2 0.84 0.46 0.29 0.19 0.14 Lungs 0.96 0.38 0.20 0.13 0.092 0.064 Kidneys 0.81 0.34 0.19 0.13 0.089 0.074 Ovaries 0.80 0.8 0.19 0.11 0.058 0.053 Uterus 0.79 0.35 0.19 0.12 0.076 0.062 LLI wall‡ 0.69 0.28 0.15 0.097 0.060 0.051 Liver 0.69 0.31 0.17 0.11 0.076 0.058 Gallbladder wall 0.69 0.26 0.14 0.093 0.059 0.049 Small intestine 0.68 0.29 0.15 0.096 0.060 0.047 ULI wall§ 0.67 0.27 0.15 0.090 0.057 0.046 Stomach wall 0.65 0.27 0.14 0.089 0.057 0.047 Adrenals 0.65 0.28 0.15 0.095 0.061 0.048 Testes 0.64 0.27 0.14 0.085 0.052 0.041 Red marrow 0.62 0.26 0.14 0.089 0.057 0.047 Thymus 0.61 0.26 0.14 0.086 0.056 0.044 Thyroid 0.61 0.26 0.13 0.080 0.049 0.039 Muscle 0.58 0.25 0.13 0.078 0.049 0.039 Bone surface 0.57 0.24 0.12 0.079 0.052 0.041 Breast 0.54 0.22 0.11 0.068 0.043 0.034 Skin 0.49 0.20 0.10 0.060 0.037 0.030 Brain 0.29 0.13 0.09 0.078 0.072 0.070 Other tissues 0.59 0.25 0.13 0.083 0.052 0.042 2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection, USP to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description (11.2)]. The dose of Fludeoxyglucose F18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection, USP from its container. Inspect Fludeoxyglucose F18 Injection, USP visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F18 Injection, USP within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F18 Injection, USP administration. Acquire static emission images 30 – 100 minutes from the time of injection. -
Essential Isotopes Llc
Fludeoxyglucose F18 | Essential Isotopes Llc
Fludeoxyglucose F18 Injection USP emits radiation. Use procedures to minimize radiation exposure. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [ see Description (11.2)].
2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 – 10 mCi (185 – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [ see Use in Special Populations (8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration.Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study.
Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [ see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug’s injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injection USPa Organ
Newborn
(3.4kg)
1-year old
(9.8kg)
5-year old
(19kg) 10-year old
(32kg) 15-year old
(57kg) Adult
(70kg)
Bladder wallb 4.3
1.7
0.93
0.60
0.40
0.32
Heart wall
2.4
1.2
0.70
0.44
0.29
0.22
Pancreas
2.2
0.68
0.33
0.25
0.13
0.096
Spleen
2.2
0.84
0.46
0.29
0.19
0.14
Lungs
0.96
0.38
0.20
0.13
0.092
0.064
Kidneys
0.81
0.34
0.19
0.13
0.089
0.074
Ovaries
0.80
0.8
0.19
0.11
0.058
0.053
Uterus
0.79
0.35
0.19
0.12
0.076
0.062
LLI wall*
0.69
0.28
0.15
0.097
0.060
0.051
Liver
0.69
0.31
0.17
0.11
0.076
0.058
Gallbladder wall
0.69
0.26
0.14
0.093
0.059
0.049
Small intestine
0.68
0.29
0.15
0.096
0.060
0.047
ULI wall**
0.67
0.27
0.15
0.090
0.057
0.046
Stomach wall
0.65
0.27
0.14
0.089
0.057
0.047
Adrenals
0.65
0.28
0.15
0.095
0.061
0.048
Testes
0.64
0.27
0.14
0.085
0.052
0.041
Red marrow
0.62
0.26
0.14
0.089
0.057
0.047
Thymus
0.61
0.26
0.14
0.086
0.056
0.044
Thyroid
0.61
0.26
0.13
0.080
0.049
0.039
Muscle 0.058
0.25
0.13
0.078
0.049
0.039
Bone surface 0.57
0.24
0.12
0.079
0.052
0.041
Breast 0.54
0.22
0.11
0.068
0.043
0.034
Skin 0.49
0.20
0.10
0.060
0.037
0.030
Brain 0.29
0.13
0.09
0.078
0.072
0.070
Other tissues 0.59
0.25
0.13
0.083
0.052
0.042
aMIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al.1 and Jones et al.2
bThe dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.
*LLI = lower large intestine; **ULI = upper large intestine
2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection USP to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [ see Description (11.2)]. The dose of Fludeoxyglucose F18 Injection USP used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection USP from its container. Inspect Fludeoxyglucose F18 Injection USP visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration. Acquire static emission images 30 – 100 minutes from the time of injection. 2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 – 10 mCi (185 – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [ see Use in Special Populations (8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration.Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study.
Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [ see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug’s injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injection USPa Organ
Newborn
(3.4kg)
1-year old
(9.8kg)
5-year old
(19kg) 10-year old
(32kg) 15-year old
(57kg) Adult
(70kg)
Bladder wallb 4.3
1.7
0.93
0.60
0.40
0.32
Heart wall
2.4
1.2
0.70
0.44
0.29
0.22
Pancreas
2.2
0.68
0.33
0.25
0.13
0.096
Spleen
2.2
0.84
0.46
0.29
0.19
0.14
Lungs
0.96
0.38
0.20
0.13
0.092
0.064
Kidneys
0.81
0.34
0.19
0.13
0.089
0.074
Ovaries
0.80
0.8
0.19
0.11
0.058
0.053
Uterus
0.79
0.35
0.19
0.12
0.076
0.062
LLI wall*
0.69
0.28
0.15
0.097
0.060
0.051
Liver
0.69
0.31
0.17
0.11
0.076
0.058
Gallbladder wall
0.69
0.26
0.14
0.093
0.059
0.049
Small intestine
0.68
0.29
0.15
0.096
0.060
0.047
ULI wall**
0.67
0.27
0.15
0.090
0.057
0.046
Stomach wall
0.65
0.27
0.14
0.089
0.057
0.047
Adrenals
0.65
0.28
0.15
0.095
0.061
0.048
Testes
0.64
0.27
0.14
0.085
0.052
0.041
Red marrow
0.62
0.26
0.14
0.089
0.057
0.047
Thymus
0.61
0.26
0.14
0.086
0.056
0.044
Thyroid
0.61
0.26
0.13
0.080
0.049
0.039
Muscle 0.058
0.25
0.13
0.078
0.049
0.039
Bone surface 0.57
0.24
0.12
0.079
0.052
0.041
Breast 0.54
0.22
0.11
0.068
0.043
0.034
Skin 0.49
0.20
0.10
0.060
0.037
0.030
Brain 0.29
0.13
0.09
0.078
0.072
0.070
Other tissues 0.59
0.25
0.13
0.083
0.052
0.042
aMIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al.1 and Jones et al.2
bThe dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.
*LLI = lower large intestine; **ULI = upper large intestine
2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection USP to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [ see Description (11.2)]. The dose of Fludeoxyglucose F18 Injection USP used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection USP from its container. Inspect Fludeoxyglucose F18 Injection USP visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration. Acquire static emission images 30 – 100 minutes from the time of injection. -
The University Of Texas Md Anderson Cancer Center
Fludeoxyglucose F18 | Proficient Rx Lp
2.1 Major Depressive DisorderInitial Treatment
2.2 Obsessive Compulsive Disorder
Adult — In controlled trials used to support the efficacy of fluoxetine, patients were administered morning doses ranging from 20 to 80 mg/day. Studies comparing fluoxetine 20, 40, and 60 mg/day to placebo indicate that 20 mg/day is sufficient to obtain a satisfactory response in Major Depressive Disorder in most cases. Consequently, a dose of 20 mg/day, administered in the morning, is recommended as the initial dose.
A dose increase may be considered after several weeks if insufficient clinical improvement is observed. Doses above 20 mg/day may be administered on a once-a-day (morning) or BID schedule (i.e., morning and noon) and should not exceed a maximum dose of 80 mg/day.
Pediatric (children and adolescents) — In the short-term (8 to 9 week) controlled clinical trials of fluoxetine supporting its effectiveness in the treatment of Major Depressive Disorder, patients were administered fluoxetine doses of 10 to 20 mg/day [see Clinical Studies (14.1)]. Treatment should be initiated with a dose of 10 or 20 mg/day. After 1 week at 10 mg/day, the dose should be increased to 20 mg/day.
However, due to higher plasma levels in lower weight children, the starting and target dose in this group may be 10 mg/day. A dose increase to 20 mg/day may be considered after several weeks if insufficient clinical improvement is observed.
All patients — As with other drugs effective in the treatment of Major Depressive Disorder, the full effect may be delayed until 4 weeks of treatment or longer.
Maintenance/Continuation/Extended Treatment — It is generally agreed that acute episodes of Major Depressive Disorder require several months or longer of sustained pharmacologic therapy. Whether the dose needed to induce remission is identical to the dose needed to maintain and/or sustain euthymia is unknown.
Daily Dosing — Systematic evaluation of fluoxetine capsules in adult patients has shown that its efficacy in Major Depressive Disorder is maintained for periods of up to 38 weeks following 12 weeks of open-label acute treatment (50 weeks total) at a dose of 20 mg/day [see Clinical Studies (14.1)].
Switching Patients to a Tricyclic Antidepressant (TCA) — Dosage of a TCA may need to be reduced, and plasma TCA concentrations may need to be monitored temporarily when fluoxetine is coadministered or has been recently discontinued [see Warnings and Precautions (5.2) and Drug Interactions (7.7)].Initial Treatment
2.3 Bulimia Nervosa
Adult — In the controlled clinical trials of fluoxetine supporting its effectiveness in the treatment of OCD, patients were administered fixed daily doses of 20, 40, or 60 mg of fluoxetine or placebo [see Clinical Studies (14.2)]. In one of these studies, no dose-response relationship for effectiveness was demonstrated. Consequently, a dose of 20 mg/day, administered in the morning, is recommended as the initial dose. Since there was a suggestion of a possible dose-response relationship for effectiveness in the second study, a dose increase may be considered after several weeks if insufficient clinical improvement is observed. The full therapeutic effect may be delayed until 5 weeks of treatment or longer.
Doses above 20 mg/day may be administered on a once daily (i.e., morning) or BID schedule (i.e., morning and noon). A dose range of 20 to 60 mg/day is recommended; however, doses of up to 80 mg/day have been well tolerated in open studies of OCD. The maximum fluoxetine dose should not exceed 80 mg/day.
Pediatric (children and adolescents) — In the controlled clinical trial of fluoxetine supporting its effectiveness in the treatment of OCD, patients were administered fluoxetine doses in the range of 10 to 60 mg/day [see Clinical Studies (14.2)].
In adolescents and higher weight children, treatment should be initiated with a dose of 10 mg/day. After 2 weeks, the dose should be increased to 20 mg/day. Additional dose increases may be considered after several more weeks if insufficient clinical improvement is observed. A dose range of 20 to 60 mg/day is recommended.
In lower weight children, treatment should be initiated with a dose of 10 mg/day. Additional dose increases may be considered after several more weeks if insufficient clinical improvement is observed. A dose range of 20 to 30 mg/day is recommended. Experience with daily doses greater than 20 mg is very minimal, and there is no experience with doses greater than 60 mg.
Maintenance/Continuation Treatment — While there are no systematic studies that answer the question of how long to continue fluoxetine capsules, OCD is a chronic condition and it is reasonable to consider continuation for a responding patient. Although the efficacy of fluoxetine capsules after 13 weeks has not been documented in controlled trials, adult patients have been continued in therapy under double-blind conditions for up to an additional 6 months without loss of benefit. However, dosage adjustments should be made to maintain the patient on the lowest effective dosage, and patients should be periodically reassessed to determine the need for treatment.Initial Treatment — In the controlled clinical trials of fluoxetine supporting its effectiveness in the treatment of Bulimia Nervosa, patients were administered fixed daily fluoxetine doses of 20 or 60 mg, or placebo [see Clinical Studies (14.3)]. Only the 60 mg dose was statistically significantly superior to placebo in reducing the frequency of binge-eating and vomiting. Consequently, the recommended dose is 60 mg/day, administered in the morning. For some patients it may be advisable to titrate up to this target dose over several days. Fluoxetine doses above 60 mg/day have not been systematically studied in patients with bulimia.
2.4 Panic Disorder
Maintenance/Continuation Treatment — Systematic evaluation of continuing fluoxetine capsules 60 mg/day for periods of up to 52 weeks in patients with bulimia who have responded while taking fluoxetine capsules 60 mg/day during an 8-week acute treatment phase has demonstrated a benefit of such maintenance treatment [see Clinical Studies (14.3)]. Nevertheless, patients should be periodically reassessed to determine the need for maintenance treatment.Initial Treatment — In the controlled clinical trials of fluoxetine supporting its effectiveness in the treatment of Panic Disorder, patients were administered fluoxetine doses in the range of 10 to 60 mg/day [see Clinical Studies (14.4)]. Treatment should be initiated with a dose of 10 mg/day. After one week, the dose should be increased to 20 mg/day. The most frequently administered dose in the 2 flexible-dose clinical trials was 20 mg/day.
2.5 Fluoxetine Capsules and Olanzapine in Combination: Depressive Episodes Associated with Bipolar I Disorder
A dose increase may be considered after several weeks if no clinical improvement is observed. Fluoxetine doses above 60 mg/day have not been systematically evaluated in patients with Panic Disorder.
Maintenance/Continuation Treatment — While there are no systematic studies that answer the question of how long to continue fluoxetine capsules, panic disorder is a chronic condition and it is reasonable to consider continuation for a responding patient. Nevertheless, patients should be periodically reassessed to determine the need for continued treatment.When using fluoxetine capsules and olanzapine in combination, also refer to the Clinical Studies section of the package insert for Symbyax.
Adult — Fluoxetine should be administered in combination with oral olanzapine once daily in the evening, without regard to meals, generally beginning with 5 mg of oral olanzapine and 20 mg of fluoxetine. Dosage adjustments, if indicated, can be made according to efficacy and tolerability within dose ranges of fluoxetine 20 to 50 mg and oral olanzapine 5 to 12.5 mg. Antidepressant efficacy was demonstrated with olanzapine and fluoxetine in combination with a dose range of olanzapine 6 to 12 mg and fluoxetine 25 to 50 mg. Safety of co-administration of doses above 18 mg olanzapine with 75 mg fluoxetine has not been evaluated in clinical studies.
Information for pediatric patients (10 to 17 years) is approved for Eli Lilly and Company’s Fluoxetine Capsules. However due to Eli Lilly and Company’s marketing exclusivity rights, this drug product is not labeled with that pediatric information.
Safety and efficacy of fluoxetine in combination with olanzapine was determined in clinical trials supporting approval of Symbyax (fixed-dose combination of olanzapine and fluoxetine). Symbyax is dosed between 3 mg/25 mg (olanzapine/fluoxetine) per day and 12 mg/50 mg (olanzapine/fluoxetine) per day. The following table demonstrates the appropriate individual component doses of fluoxetine capsules and olanzapine versus Symbyax. Dosage adjustments, if indicated, should be made with the individual components according to efficacy and tolerability.
Table 1: Approximate Dose Correspondence Between Symbyax1 and the Combination of Fluoxetine and Olanzapine For Symbyax (mg/day)
Use in Combination
Olanzapine
(mg/day)
Fluoxetine
(mg/day)
1 Symbyax (olanzapine/fluoxetine hydrochloride) is a fixed-dose combination of fluoxetine and olanzapine.3 mg olanzapine/25 mg fluoxetine
2.5
20
6 mg olanzapine/25 mg fluoxetine
5
20
12 mg olanzapine/25 mg fluoxetine
10+2.5
20
6 mg olanzapine/50 mg fluoxetine
5
40+10
12 mg olanzapine/50 mg fluoxetine
10+2.5
40+10
While there is no body of evidence to answer the question of how long a patient treated with fluoxetine capsules and olanzapine in combination should remain on it, it is generally accepted that Bipolar I Disorder, including the depressive episodes associated with Bipolar I Disorder, is a chronic illness requiring chronic treatment. The physician should periodically re-examine the need for continued pharmacotherapy. Fluoxetine capsules monotherapy is not indicated for the treatment of depressive episodes associated with Bipolar I Disorder.
2.7 Dosing in Specific PopulationsTreatment of Pregnant Women — When treating pregnant women with fluoxetine capsules, the physician should carefully consider the potential risks and potential benefits of treatment. Neonates exposed to SSRIs or SNRIs late in the third trimester have developed complications requiring prolonged hospitalization, respiratory support, and tube feeding [see Use in Specific Populations (8.1)].
Geriatric — A lower or less frequent dosage should be considered for the elderly [see Use in Specific Populations (8.5)].
Hepatic Impairment — As with many other medications, a lower or less frequent dosage should be used in patients with hepatic impairment [see Clinical Pharmacology (12.4) and Use in Specific Populations (8.6)].
Concomitant Illness — Patients with concurrent disease or on multiple concomitant medications may require dosage adjustments [see Clinical Pharmacology (12.4) and Warnings and Precautions (5.10)].Fluoxetine Capsules and Olanzapine in Combination — The starting dose of oral olanzapine 2.5 to 5 mg with fluoxetine 20 mg should be used for patients with a predisposition to hypotensive reactions, patients with hepatic impairment, or patients who exhibit a combination of factors that may slow the metabolism of olanzapine or fluoxetine in combination (female gender, geriatric age, non-smoking status), or those patients who may be pharmacodynamically sensitive to olanzapine. Dosing modifications may be necessary in patients who exhibit a combination of factors that may slow metabolism. When indicated, dose escalation should be performed with caution in these patients. Fluoxetine capsules and olanzapine in combination have not been systematically studied in patients over 65 years of age or in patients less than 10 years of age [see Warnings and Precautions (5.14) and Drug Interactions (7.7)].
2.8 Discontinuation of TreatmentSymptoms associated with discontinuation of fluoxetine, SNRIs, and SSRIs, have been reported [see Warnings and Precautions (5.13)].
2.9 Switching a Patient To or From a Monoamine Oxidase Inhibitor (MAOI) Intended to Treat Psychiatric DisordersAt least 14 days should elapse between discontinuation of an MAOI intended to treat psychiatric disorders and initiation of therapy with fluoxetine capsules. Conversely, at least 5 weeks should be allowed after stopping fluoxetine capsules before starting an MAOI intended to treat psychiatric disorders [see Contraindications (4.1)].
2.10 Use of Fluoxetine Capsules with Other MAOIs such as Linezolid or Methylene BlueDo not start fluoxetine capsules in a patient who is being treated with linezolid or intravenous methylene blue because there is an increased risk of serotonin syndrome. In a patient who requires more urgent treatment of a psychiatric condition, other interventions, including hospitalization, should be considered [see Contraindications (4.1)].
In some cases, a patient already receiving fluoxetine capsules therapy may require urgent treatment with linezolid or intravenous methylene blue. If acceptable alternatives to linezolid or intravenous methylene blue treatment are not available and the potential benefits of linezolid or intravenous methylene blue treatment are judged to outweigh the risks of serotonin syndrome in a particular patient, fluoxetine capsules should be stopped promptly, and linezolid or intravenous methylene blue can be administered. The patient should be monitored for symptoms of serotonin syndrome for five weeks or until 24 hours after the last dose of linezolid or intravenous methylene blue, whichever comes first. Therapy with fluoxetine capsules may be resumed 24 hours after the last dose of linezolid or intravenous methylene blue [see Warnings and Precautions (5.2)].
The risk of administering methylene blue by non-intravenous routes (such as oral tablets or by local injection) or in intravenous doses much lower than 1 mg/kg with fluoxetine capsules is unclear. The clinician should, nevertheless, be aware of the possibility of emergent symptoms of serotonin syndrome with such use [see Warnings and Precautions (5.2)]. -
Ucsf Radiopharmaceutical Facility
Fludeoxyglucose F18 | Ucsf Radiopharmaceutical Facility
Fludeoxyglucose F18 Injection emits radiation. Use procedures to minimize radiation exposure. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [ see Description (11.2)].
2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 – 10 mCi (185 – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [ see Use in Special Populations (8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration.Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study.
Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [ see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug’s injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injectiona Organ
Newborn
(3.4kg)
1-year old
(9.8kg)
5-year old
(19kg) 10-year old
(32kg) 15-year old
(57kg) Adult
(70kg)
Bladder wallb 4.3
1.7
0.93
0.60
0.40
0.32
Heart wall
2.4
1.2
0.70
0.44
0.29
0.22
Pancreas
2.2
0.68
0.33
0.25
0.13
0.096
Spleen
2.2
0.84
0.46
0.29
0.19
0.14
Lungs
0.96
0.38
0.20
0.13
0.092
0.064
Kidneys
0.81
0.34
0.19
0.13
0.089
0.074
Ovaries
0.80
0.8
0.19
0.11
0.058
0.053
Uterus
0.79
0.35
0.19
0.12
0.076
0.062
LLI wall*
0.69
0.28
0.15
0.097
0.060
0.051
Liver
0.69
0.31
0.17
0.11
0.076
0.058
Gallbladder wall
0.69
0.26
0.14
0.093
0.059
0.049
Small intestine
0.68
0.29
0.15
0.096
0.060
0.047
ULI wall**
0.67
0.27
0.15
0.090
0.057
0.046
Stomach wall
0.65
0.27
0.14
0.089
0.057
0.047
Adrenals
0.65
0.28
0.15
0.095
0.061
0.048
Testes
0.64
0.27
0.14
0.085
0.052
0.041
Red marrow
0.62
0.26
0.14
0.089
0.057
0.047
Thymus
0.61
0.26
0.14
0.086
0.056
0.044
Thyroid
0.61
0.26
0.13
0.080
0.049
0.039
Muscle 0.058
0.25
0.13
0.078
0.049
0.039
Bone surface 0.57
0.24
0.12
0.079
0.052
0.041
Breast 0.54
0.22
0.11
0.068
0.043
0.034
Skin 0.49
0.20
0.10
0.060
0.037
0.030
Brain 0.29
0.13
0.09
0.078
0.072
0.070
Other tissues 0.59
0.25
0.13
0.083
0.052
0.042
aMIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al.1 and Jones et al.2
bThe dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.
*LLI = lower large intestine; **ULI = upper large intestine
2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [ see Description (11.2)]. The dose of Fludeoxyglucose F18 Injection used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection from its container. Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration. Acquire static emission images 30 – 100 minutes from the time of injection. 2.1 Recommended Dose for AdultsWithin the oncology, cardiology and neurology settings, the recommended dose for adults is 5 – 10 mCi (185 – 370 MBq) as an intravenous injection.
2.2 Recommended Dose for Pediatric PatientsWithin the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [ see Use in Special Populations (8.4)].
2.3 Patient Preparation To minimize the radiation absorbed dose to the bladder, encourage adequate hydration.Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study.
Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour. Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [ see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 – 6 hours prior to the drug’s injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 – 75 grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia. 2.4 Radiation DosimetryThe estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human2 data and using the data published by the International Commission on Radiological Protection4 for Fludeoxyglucose 18F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.
Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injectiona Organ
Newborn
(3.4kg)
1-year old
(9.8kg)
5-year old
(19kg) 10-year old
(32kg) 15-year old
(57kg) Adult
(70kg)
Bladder wallb 4.3
1.7
0.93
0.60
0.40
0.32
Heart wall
2.4
1.2
0.70
0.44
0.29
0.22
Pancreas
2.2
0.68
0.33
0.25
0.13
0.096
Spleen
2.2
0.84
0.46
0.29
0.19
0.14
Lungs
0.96
0.38
0.20
0.13
0.092
0.064
Kidneys
0.81
0.34
0.19
0.13
0.089
0.074
Ovaries
0.80
0.8
0.19
0.11
0.058
0.053
Uterus
0.79
0.35
0.19
0.12
0.076
0.062
LLI wall*
0.69
0.28
0.15
0.097
0.060
0.051
Liver
0.69
0.31
0.17
0.11
0.076
0.058
Gallbladder wall
0.69
0.26
0.14
0.093
0.059
0.049
Small intestine
0.68
0.29
0.15
0.096
0.060
0.047
ULI wall**
0.67
0.27
0.15
0.090
0.057
0.046
Stomach wall
0.65
0.27
0.14
0.089
0.057
0.047
Adrenals
0.65
0.28
0.15
0.095
0.061
0.048
Testes
0.64
0.27
0.14
0.085
0.052
0.041
Red marrow
0.62
0.26
0.14
0.089
0.057
0.047
Thymus
0.61
0.26
0.14
0.086
0.056
0.044
Thyroid
0.61
0.26
0.13
0.080
0.049
0.039
Muscle 0.058
0.25
0.13
0.078
0.049
0.039
Bone surface 0.57
0.24
0.12
0.079
0.052
0.041
Breast 0.54
0.22
0.11
0.068
0.043
0.034
Skin 0.49
0.20
0.10
0.060
0.037
0.030
Brain 0.29
0.13
0.09
0.078
0.072
0.070
Other tissues 0.59
0.25
0.13
0.083
0.052
0.042
aMIRDOSE 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al.1 and Jones et al.2
bThe dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.
*LLI = lower large intestine; **ULI = upper large intestine
2.5 Radiation Safety – Drug Handling Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons. Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [ see Description (11.2)]. The dose of Fludeoxyglucose F18 Injection used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed. 2.6 Drug Preparation and Administration Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F18 Injection from its container. Inspect Fludeoxyglucose F18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit. Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS. 2.7 Imaging Guidelines Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration. Acquire static emission images 30 – 100 minutes from the time of injection.
Login To Your Free Account