Moexipril Hydrochloride And Hydrochlorothiazide

Moexipril Hydrochloride And Hydrochlorothiazide

Moexipril Hydrochloride And Hydrochlorothiazide Recall

Get an alert when a recall is issued.

Questions & Answers

Side Effects & Adverse Reactions

Anaphylactoid and Possibly Related Reactions

Presumably because angiotensin-converting enzyme inhibitors affect the metabolism of eicosanoids and polypeptides, including endogenous bradykinin, patients receiving ACE inhibitors, including Moexipril HCl and Hydrochlorothiazide Tablets, may be subject to a variety of adverse reactions, some of them serious.

Head and Neck Angioedema:

Angioedema involving the face, extremities, lips, tongue, glottis, and/or larynx has been reported in patients treated with ACE inhibitors, including moexipril. Symptoms suggestive of angioedema or facial edema occurred in < 0.5% of moexipril-treated patients in placebo-controlled trials. None of the cases were considered life-threatening and all resolved either without treatment or with medication (antihistamines or glucocorticoids). One patient treated with hydrochlorothiazide alone experienced laryngeal edema. No instances of angioedema were reported in placebo-treated patients.

In cases of angioedema, treatment with Moexipril HCl and Hydrochlorothiazide Tablets should be promptly discontinued and the patient carefully observed until the swelling disappears. In instances where swelling has been confined to the face and lips, the condition has generally resolved without treatment, although antihistamines have been useful in relieving symptoms.

Angioedema associated with involvement of the tongue, glottis, or larynx may be fatal due to airway obstruction. Appropriate therapy, e.g., subcutaneous epinephrine solution 1:1000 (0.3 to 0.5 mL) and/or measures to ensure a patent airway, should be promptly provided (see ADVERSE REACTIONS).

Intestinal Angioedema:

Intestinal angioedema has been reported in patients treated with ACE inhibitors. These patients presented with abdominal pain (with or without nausea or vomiting); in some cases there was no prior history of facial angioedema and C-1 esterase levels were normal. The angioedema was diagnosed by procedures including abdominal CT scan or ultrasound, or at surgery, and symptoms resolved after stopping the ACE inhibitor. Intestinal angioedema should be included in the differential diagnosis of patients on ACE inhibitors presenting with abdominal pain.

Anaphylactoid Reactions During Desensitization:

Two patients undergoing desensitizing treatment with hymenoptera venom while receiving ACE inhibitors sustained life-threatening anaphylactoid reactions. In the same patients, these reactions did not occur when ACE inhibitors were temporarily withheld, but they reappeared when the ACE inhibitors were inadvertently readministered.

Anaphylactoid Reactions During Membrane Exposure:

Anaphylactoid reactions have been reported in patients dialyzed with high-flux membranes and treated concomitantly with an ACE inhibitor. Anaphylactoid reactions have also been reported in patients undergoing low-density lipoprotein apheresis with dextran sulfate absorption.

Hypotension

Moexipril HCl and Hydrochlorothiazide Tablets can cause symptomatic hypotension, although, as with other ACE inhibitors, this is unusual in uncomplicated hypertensive patients treated with Moexipril HCl and Hydrochlorothiazide Tablets alone. Symptomatic hypotension is most likely to occur in patients who have been salt- and/or volume-depleted as a result of prolonged diuretic therapy, dietary salt restriction, dialysis, diarrhea, or vomiting. Volume- and/or salt-depletion should be corrected before initiating therapy with Moexipril HCl and Hydrochlorothiazide Tablets (see ADVERSE REACTIONS).

The thiazide component of Moexipril HCl and Hydrochlorothiazide Tablets may potentiate the action of other antihypertensive drugs, especially ganglionic or peripheral adrenergic-blocking drugs. The antihypertensive effects of the thiazide component may also be enhanced in the postsympathectomy patient.

In patients with congestive heart failure, with or without associated renal insufficiency, ACE inhibitor therapy may cause excessive hypotension, which may be associated with oliguria or progressive azotemia, and rarely, with acute renal failure and death. In these patients, Moexipril HCl and Hydrochlorothiazide Tablets therapy should be started under close medical supervision, and patients should be followed closely for the first two weeks of treatment and whenever the dose of Moexipril HCl and Hydrochlorothiazide Tablets is increased. Care in avoiding hypotension should also be taken in patients with ischemic heart disease, aortic stenosis, or cerebrovascular disease, in whom an excessive decrease in blood pressure could result in a myocardial infarction or a cerebrovascular accident.

If hypotension occurs, the patient should be placed in a supine position and, if necessary, treated with an intravenous infusion of normal saline. Moexipril HCl and Hydrochlorothiazide Tablets treatment usually can be continued following restoration of blood pressure and volume.

Impaired Renal Function

Moexipril HCl and Hydrochlorothiazide Tablets should be used with caution in patients with severe renal disease. Thiazide diuretics may precipitate azotemia in such patients and the effects of repeated dosing may be cumulative.

As a consequence of inhibition of the renin-angiotensin-aldosterone system, changes in renal function may be anticipated in susceptible individuals. There is no clinical experience of Moexipril HCl and Hydrochlorothiazide Tablets in the treatment of hypertension in patients with renal failure.

Some hypertensive patients with no apparent preexisting renal vascular disease have developed increases in blood urea nitrogen and serum creatinine, usually minor and transient, especially when moexipril has been given concomitantly with a thiazide diuretic. This is more likely to occur in patients with preexisting renal impairment. There may be a need for dose adjustment of Moexipril HCl and Hydrochlorothiazide Tablets. Evaluation of hypertensive patients should always include assessment of renal function (see DOSAGE AND ADMINISTRATION).

In hypertensive patients with severe congestive heart failure, whose renal function may depend on the activity of the renin-angiotensin-aldosterone system, treatment with ACE inhibitors, including moexipril, may be associated with oliguria and/or progressive azotemia and, rarely, acute renal failure and/or death.

In hypertensive patients with unilateral or bilateral renal artery stenosis, increases in blood urea nitrogen and serum creatinine have been observed in some patients following ACE inhibitor therapy. These increases were almost always reversible upon discontinuation of the ACE inhibitor and/or diuretic therapy. In such patients, renal function should be monitored during the first few weeks of therapy.

Neutropenia/Agranulocytosis

Another ACE inhibitor, captopril, has been shown to cause agranulocytosis and bone marrow depression, rarely in patients with uncomplicated hypertension, but more frequently in hypertensive patients with renal impairment, especially if they also have a collagen-vascular disease such as systemic lupus erythematosus or scleroderma. Although there were no instances of severe neutropenia (absolute neutrophil count < 500/mm3) among patients given moexipril, as with other ACE inhibitors, monitoring of white blood cell counts should be considered for patients who have collagen-vascular disease, especially if the disease is associated with impaired renal function. Available data from clinical trials of moexipril are insufficient to show that moexipril does not cause agranulocytosis at rates similar to captopril.

Fetal/Neonatal Morbidity and Mortality

ACE inhibitors can cause fetal and neonatal morbidity and death when administered to pregnant women. Several dozen cases have been reported in the world literature. When pregnancy is detected, ACE inhibitors should be discontinued as soon as possible.

The use of ACE inhibitors during the second and third trimesters of pregnancy has been associated with fetal and neonatal injury, including hypotension, neonatal skull hypoplasia, anuria, reversible or irreversible renal failure, and death. Oligohydramnios has also been reported, presumably resulting from decreased fetal renal function; oligohydramnios in this setting has been associated with fetal limb contractures, craniofacial deformation, and hypoplastic lung development. Prematurity, intrauterine growth retardation, and patent ductus arteriosus have also been reported, although it is not clear whether these were caused by the ACE inhibitor exposure.

Fetal and neonatal morbidity do not appear to have resulted from intrauterine ACE inhibitor exposure limited to the first trimester. Mothers who have used ACE inhibitors only during the first trimester should be informed of this. Nonetheless, when patients become pregnant, physicians should make every effort to discontinue the use of Moexipril HCl and Hydrochlorothiazide Tablets as soon as possible.

Rarely (probably less often than once in every thousand pregnancies), no alternative to ACE inhibitors will be found. In these rare cases, the mothers should be apprised of the potential hazards to their fetuses, and serial ultrasound examinations should be performed to assess the intraamniotic environment.

If oligohydramnios is observed, Moexipril HCl and Hydrochlorothiazide Tablets should be discontinued unless it is considered life-saving for the mother. Contraction stress testing (CST), a non-stress test (NST), or biophysical profiling (BPP) may be appropriate, depending upon the week of pregnancy. Patients and physicians should be aware, however, that oligohydramnios may not be detected until after the fetus has sustained irreversible injury.

Infants with histories of in utero exposure to ACE inhibitors should be closely observed for hypotension, oliguria, and hyperkalemia. If oliguria occurs, attention should be directed toward support of blood pressure and renal perfusion. Exchange transfusion or peritoneal dialysis may be required as means of reversing hypotension and/or substituting for disordered renal function. Theoretically, the ACE inhibitor could be removed from the neonatal circulation by exchange transfusion, but no experience with this procedure has been reported.

Intrauterine exposure to thiazide diuretics is associated with fetal or neonatal jaundice, thrombocytopenia, and possibly other adverse reactions that have occurred in adults.

Reproduction studies with the combination of moexipril hydrochloride and hydrochlorothiazide (ratio 7.5:12.5) indicated that the combination possessed no teratogenic properties up to the lethal dose of 800 mg/kg/day in rats and up to the maternotoxic dose of 160 mg/kg/day in rabbits.

Hepatic Failure

Rarely, ACE inhibitors have been associated with a syndrome that starts with cholestatic jaundice and progresses to fulminant hepatic necrosis and sometimes death. The mechanism of this syndrome is not understood. Patients receiving ACE inhibitors who develop jaundice or marked elevations of hepatic enzymes should discontinue the ACE Inhibitor and receive appropriate medical follow-up.

Impaired Hepatic Function

Moexipril HCl and Hydrochlorothiazide Tablets should be used with caution in patients with impaired hepatic function or progressive liver disease, since minor alterations of fluid and electrolyte balance may precipitate hepatic coma. In patients with mild to moderate cirrhosis given single 15 mg doses of moexipril, the Cmax of moexipril was increased by about 50% and the AUC increased by about 120%, while the Cmax for moexiprilat was decreased by about 50% and the AUC increased by almost 300%. No formal pharmacokinetic studies have been carried out with Moexipril HCl and Hydrochlorothiazide Tablets in hypertensive patients with impaired liver function.

Systemic Lupus Erythematosus

Thiazide diuretics have been reported to cause exacerbation or activation of systemic lupus erythematosus.

Legal Issues

There is currently no legal information available for this drug.

FDA Safety Alerts

There are currently no FDA safety alerts available for this drug.

Manufacturer Warnings

There is currently no manufacturer warning information available for this drug.

FDA Labeling Changes

There are currently no FDA labeling changes available for this drug.

Uses

Moexipril HCl and Hydrochlorothiazide Tablets is indicated for treatment of patients with hypertension. This fixed combination is not indicated for the initial therapy of hypertension (see DOSAGE AND ADMINISTRATION).

In using Moexipril HCl and Hydrochlorothiazide Tablets, consideration should be given to the fact that another ACE inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen-vascular disease. Available data are insufficient to show that Moexipril HCl and Hydrochlorothiazide Tablets does not have a similar risk (see WARNINGS, Neutropenia/Agranulocytosis). In addition, ACE inhibitors, for which adequate data are available, cause a higher rate of angioedema in black than in nonblack patients (see WARNINGS, Angioedema).

History

There is currently no drug history available for this drug.

Other Information

Moexipril HCl and Hydrochlorothiazide Tablets is a combination of an angiotensin-converting enzyme (ACE) inhibitor, moexipril hydrochloride, and a diuretic, hydrochlorothiazide. Moexipril hydrochloride is a fine white to off-white powder. It is soluble (about 10% weight-to-volume) in distilled water at room temperature. It has the empirical formula C27H34N2O7•HCl and a molecular weight of 535.04. It is chemically described as [3S-[2[R*(R*)],3R*]]-2-[2-[[1-(Ethoxycarbonyl)-3-phenyl-propyl]amino]-1-oxopropyl]-1,2,3,4-tetrahydro-6,7-dimethoxy-3-isoquino-linecarboxylic acid, monohydrochloride. Moexipril hydrochloride is a non-sulfhydryl containing precursor of the active ACE inhibitor moexiprilat and its structural formula is:

Chemical Structure

Hydrochlorothiazide is a white, or practically white, crystalline powder. It is slightly soluble in water, freely soluble in sodium hydroxide solution, in n-butylamine and in dimethylformamide. Hydrochlorothiazide has the empirical formula C7H8CIN3O4S2 and a molecular weight of 297.75. It is chemically described as 2H-1,2,4-Benzothiadiazine-7-sulfonamide,6-chloro-3,4-dihydro-,1,1-dioxide. Hydrochlorothiazide is a thiazide diuretic and its structural formula is:

Chemical Structure

Moexipril HCl and Hydrochlorothiazide Tablets is available for oral administration in three tablet strengths. The inactive ingredients in all strengths are lactose, magnesium oxide, crospovidone, magnesium stearate, povidone and colloidal silicon dioxide. The film coating in all strengths contains hypromellose, titanium dioxide and polyethylene glycol 400. In addition, the film coating for Moexipril HCl and Hydrochlorothiazide Tablets 7.5 mg / 12.5 mg and Moexipril HCl and Hydrochlorothiazide Tablets 15 mg / 25 mg contains ferric oxide. The film coating for Moexipril HCl and Hydrochlorothiaziade Tablets 15 mg / 12.5 mg also contains Polysorbate 80.

Moexipril Hydrochloride And Hydrochlorothiazide Manufacturers


  • Paddock Laboratories, Inc.
    Moexipril Hydrochloride And Hydrochlorothiazide Tablet, Coated [Paddock Laboratories, Inc.]
  • Glenmark Generics Inc., Usa
    Moexipril Hydrochloride And Hydrochlorothiazide Tablet, Film Coated [Glenmark Generics Inc., Usa]
  • Teva Pharmaceuticals Usa Inc
    Moexipril Hydrochloride And Hydrochlorothiazide Tablet, Film Coated [Teva Pharmaceuticals Usa Inc]
  • Heritage Pharmaceuticals Inc.
    Moexipril Hydrochloride And Hydrochlorothiazide Tablet, Film Coated [Heritage Pharmaceuticals Inc.]

Login To Your Free Account