FDA records indicate that there are no current recalls for this drug.
Are you a medical professional?
Trending Topics
Quinapril Hydrochloride And Hydrochlorothiazide Recall
Get an alert when a recall is issued.
Questions & Answers
Side Effects & Adverse Reactions
Anaphylactoid and Possibly Related Reactions: Presumably because angiotensin converting inhibitors affect the metabolism of eicosanoids and polypeptides, including endogenous bradykinin, patients receiving ACE inhibitors (including quinapril) may be subject to a variety of adverse reactions, some of them serious.
Head and Neck Angioedema: Angioedema of the face, extremities, lips, tongue, glottis, and larynx has been reported in patients treated with ACE inhibitors and has been seen in 0.1% of patients receiving quinapril. In two similarly sized US postmarketing quinapril trials that, combined, enrolled over 3,000 black patients and over 19,000 non-blacks, angioedema was reported in 0.30% and 0.55% of blacks (in Study 1 and 2, respectively) and 0.39% and 0.17% of non-blacks. Angioedema associated with laryngeal edema can be fatal. If laryngeal stridor or angioedema of the face, tongue, or glottis occurs, treatment with quinapril HCl and hydrochlorothiazide tablets should be discontinued immediately, the patient treated in accordance with accepted medical care, and carefully observed until the swelling disappears. In instances where swelling is confined to the face and lips, the condition generally resolves without treatment; antihistamines may be useful in relieving symptoms. Where there is involvement of the tongue, glottis, or larynx likely to cause airway obstruction, emergency therapy including, but not limited to, subcutaneous epinephrine solution 1:1000 (0.3 to 0.5 mL) should be promptly administered (see PRECAUTIONSand ADVERSE REACTIONS).
Patients taking concomitant mTOR inhibitor (e.g. temsirolimus) therapy may be at increased risk for angioedema.
Intestinal Angioedema: Intestinal angioedema has been reported in patients treated with ACE inhibitors. These patients presented with abdominal pain (with or without nausea or vomiting); in some cases there was no prior history of facial angioedema and C-1 esterase levels were normal. The angioedema was diagnosed by procedures including abdominal CT scan or ultrasound, or at surgery, and symptoms resolved after stopping the ACE inhibitor. Intestinal angioedema should be included in the differential diagnosis of patients on ACE inhibitors presenting with abdominal pain.
Patients With a History of Angioedema: Patients with a history of angioedema unrelated to ACE inhibitor therapy may be at increased risk of angioedema while receiving an ACE inhibitor (see also CONTRAINDICATIONS).
Anaphylactoid Reactions During Desensitization: Two patients undergoing desensitizing treatment with Hymenoptera venom while receiving ACE inhibitors sustained life-threatening anaphylactoid reactions. In the same patients, these reactions were avoided when ACE inhibitors were temporarily withheld, but they reappeared upon inadvertent challenge.
Anaphylactoid Reactions During Membrane Exposure: Anaphylactoid reactions have been reported in patients dialyzed with high-flux membranes and treated concomitantly with an ACE inhibitor. Anaphylactoid reactions have also been reported in patients undergoing low-density lipoprotein apheresis with dextran sulfate absorption.
Hepatic Failure: Rarely, ACE inhibitors have been associated with a syndrome that starts with cholestatic jaundice and progresses to fulminant hepatic necrosis and (sometimes) death. The mechanism of this syndrome is not understood. Patients receiving ACE inhibitors who develop jaundice or marked elevations of hepatic enzymes should discontinue the ACE inhibitor and receive appropriate medical follow-up.
Hypotension: Quinapril HCl and hydrochlorothiazide tablets can cause symptomatic hypotension, probably not more frequently than either monotherapy. It was reported in 1.2% of 1,571 patients receiving quinapril HCl and hydrochlorothiazide tablets during clinical trials. Like other ACE inhibitors, quinapril has been only rarely associated with hypotension in uncomplicated hypertensive patients.
Symptomatic hypotension sometimes associated with oliguria and/or progressive azotemia, and rarely acute renal failure and/or death, include patients with the following conditions or characteristics: heart failure, hyponatremia, high dose diuretic therapy, recent intensive diuresis or increase in diuretic dose, renal dialysis or severe volume and/or salt depletion of any etiology. Volume and/or salt depletion should be corrected before initiating therapy with quinapril HCl and hydrochlorothiazide tablets.
Quinapril HCl and hydrochlorothiazide tablets should be used cautiously in patients receiving concomitant therapy with other antihypertensives. The thiazide component of quinapril HCl and hydrochlorothiazide tablets may potentiate the action of other antihypertensive drugs, especially ganglionic or peripheral adrenergic-blocking drugs. The antihypertensive effects of the thiazide component may also be enhanced in the postsympathectomy patients.
In patients at risk of excessive hypotension, therapy with quinapril HCl and hydrochlorothiazide tablets should be started under close medical supervision. Such patients should be followed closely for the first 2 weeks of treatment and whenever the dosage of quinapril or diuretic is increased. Similar considerations may apply to patients with ischemic heart or cerebrovascular disease in whom an excessive fall in blood pressure could result in myocardial infarction or cerebrovascular accident.
If excessive hypotension occurs, the patient should be placed in a supine position and, if necessary, treated with intravenous infusion of normal saline. Quinapril HCl and hydrochlorothiazide treatment usually can be continued following restoration of blood pressure and volume. If symptomatic hypotension develops, a dose reduction or discontinuation of quinapril HCl and hydrochlorothiazide tablets may be necessary.
Impaired Renal Function: Quinapril HCl and hydrochlorothiazide tablets should be used with caution in patients with severe renal disease. Thiazides may precipitate azotemia in such patients, and the effects of repeated dosing may be cumulative.
When the renin-angiotensin-aldosterone system is inhibited by quinapril, changes in renal function may be anticipated in susceptible individuals. In patients with severe congestive heart failure, whose renal function may depend on the activity of the renin-angiotensin-aldosterone system, treatment with angiotensin-converting enzyme inhibitors (including quinapril) may be associated with oliguria and/or progressive azotemia and (rarely) with acute renal failure and/or death.
In clinical studies in hypertensive patients with unilateral renal artery stenosis, treatment with ACE inhibitors was associated with increases in blood urea nitrogen and serum creatinine; these increases were reversible upon discontinuation of ACE inhibitor, concomitant diuretic, or both. When such patients are treated with quinapril HCl and hydrochlorothiazide tablets, renal function should be monitored during the first few weeks of therapy.
Some quinapril-treated hypertensive patients with no apparent preexisting renal vascular diseases have developed increases in blood urea nitrogen and serum creatinine, usually minor and transient, especially when quinapril has been given concomitantly with a diuretic. This is more likely to occur in patients with pre-existing renal impairment. Dosage reduction of quinapril HCl and hydrochlorothiazide tablets may be required. Evaluation of the hypertensive patients should also include assessment of the renal function (see DOSAGE AND ADMINISTRATION).
Neutropenia/Agranulocytosis: Another ACE inhibitor, captopril, has been shown to cause agranulocytosis and bone marrow depression rarely in patients with uncomplicated hypertension, but more frequently in patients with renal impairment, especially if they also have a collagen vascular disease, such as systemic lupus erythematosus or scleroderma. Agranulocytosis did occur during quinapril treatment in one patient with a history of neutropenia during previous captopril therapy. Available data from clinical trials of quinapril are insufficient to show that, in patients without prior reactions to other ACE inhibitors, quinapril does not cause agranulocytosis at similar rates. As with other ACE inhibitors, periodic monitoring of white blood cell counts in patients with collagen vascular disease and/or renal disease should be considered.
Fetal Toxicity
Pregnancy Category D
Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure, and death. When pregnancy is detected, discontinue quinapril HCl and hydrochlorothiazide tablets as soon as possible. These adverse outcomes are usually associated with use of these drugs in the second and third trimester of pregnancy. Most epidemiologic studies examining fetal abnormalities after exposure to antihypertensive use in the first trimester have not distinguished drugs affecting the renin-angiotensin system from other antihypertensive agents. Appropriate management of maternal hypertension during pregnancy is important to optimize outcomes for both mother and fetus.
In the unusual case that there is no appropriate alternative to therapy with drugs affecting the renin-angiotensin system for a particular patient, apprise the mother of the potential risk to the fetus. Perform serial ultrasound examinations to assess the intra-amniotic environment. If oligohydramnios is observed, discontinue quinapril HCl and hydrochlorothiazide tablets, unless it is considered life-saving for the mother. Fetal testing may be appropriate, based on the week of pregnancy. Patients and physicians should be aware, however, that oligohydramnios may not appear until after the fetus has sustained irreversible injury. Closely observe infants with histories of in utero exposure to quinapril HCl and hydrochlorothiazide tablets for hypotension, oliguria, and hyperkalemia (see PRECAUTIONS, Pediatric Use).
Intrauterine exposure to thiazide diuretics is associated with fetal or neonatal jaundice, thrombocytopenia, and possibly other adverse reactions that occurred in adults.
No teratogenic effects of quinapril were seen in studies of pregnant rats and rabbits. On a mg/kg basis, the doses used were up to 180 times (in rats) and one time (in rabbits) the maximum recommended human dose. No teratogenic effects of quinapril HCl and hydrochlorothiazide tablets were seen in studies of pregnant rats and rabbits. On a mg/kg (quinapril/hydrochlorothiazide) basis, the doses used were up to 188/94 times (in rats) and 0.6/0.3 times (in rabbits) the maximum recommended human dose.
Impaired Hepatic Function: Quinapril HCl and hydrochlorothiazide tablets should be used with caution in patients with impaired hepatic function or progressive liver disease, since minor alterations of fluid and electrolyte balance may precipitate hepatic coma. Also, since the metabolism of quinapril to quinaprilat is normally dependent upon hepatic esterases, patients with impaired liver function could develop markedly elevated plasma levels of quinapril. No normal pharmacokinetic studies have been carried out in hypertensive patients with impaired liver function.
Systemic Lupus Erythematosus: Thiazide diuretics have been reported to cause exacerbation or activation of systemic lupus erythematosus.
Acute Myopia and Secondary Angle-Closure Glaucoma: Hydrochlorothiazide, a sulfonamide, can cause an idiosyncratic reaction, resulting in acute transient myopia and acute angle-closure glaucoma. Symptoms include acute onset of decreased visual acuity or ocular pain and typically occur within hours to weeks of drug initiation. Untreated acute angle-closure glaucoma can lead to permanent vision loss. The primary treatment is to discontinue hydrochlorothiazide as rapidly as possible. Prompt medical or surgical treatments may need to be considered if the intraocular pressure remains uncontrolled. Risk factors for developing acute angle-closure glaucoma may include a history of sulfonamide or penicillin allergy.
Legal Issues
There is currently no legal information available for this drug.
FDA Safety Alerts
There are currently no FDA safety alerts available for this drug.
Manufacturer Warnings
There is currently no manufacturer warning information available for this drug.
FDA Labeling Changes
There are currently no FDA labeling changes available for this drug.
Uses
Hypertension: Quinapril HCl and hydrochlorothiazide tablets, USP are indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes including the class to which this drug principally belongs. There are no controlled trials demonstrating risk reduction with quinapril HCl and hydrochlorothiazide tablets.
Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program’s Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).
Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.
Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.
Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy.
This fixed combination is not indicated for the initial therapy of hypertension (see DOSAGE AND ADMINISTRATION).
In using quinapril HCl and hydrochlorothiazide tablets, consideration should be given to the fact that another angiotensin-converting enzyme inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen-vascular disease. Available data are insufficient to show that quinapril does not have a similar risk (see WARNINGS: Neutropenia/Agranulocytosis).
Angioedema in Black Patients: Black patients receiving ACE inhibitor monotherapy have been reported to have a higher incidence of angioedema compared to non-blacks. It should also be noted that in controlled clinical trials, ACE inhibitors have an effect on blood pressure that is less in black patients than in non-blacks.
History
There is currently no drug history available for this drug.
Other Information
Quinapril HCl and hydrochlorothiazide tablets are fixed-combination tablets that combine an angiotensin-converting enzyme (ACE) inhibitor, quinapril hydrochloride, and a thiazide diuretic, hydrochlorothiazide.
Quinapril hydrochloride USP is chemically described as [3S-[2[R*(R*)], 3R*]]-2-[2-[[1-(ethoxycarbonyl)-3-phenylpropyl] amino]-1-oxopropyl]-1, 2, 3, 4-tetrahydro-3-isoquinolinecarboxylic acid, monohydrochloride. Its empirical formula is C 25 H 30 N 2 O 5 . HCl and its structural formula is:
Quinapril hydrochloride USP is a white to off-white amorphous powder that is freely soluble in aqueous solvents.
Hydrochlorothiazide USP is chemically described as: 6-Chloro-3, 4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide. Its empirical formula is C 7 H 8 CIN 3 O 4 S 2 and its structural formula is:
Hydrochlorothiazide USP is a white to off-white, crystalline powder which is slightly soluble in water but freely soluble in sodium hydroxide solution.
Quinapril HCl and hydrochlorothiazide tablets, USP are available for oral use as fixed combination tablets in three strengths of quinapril with hydrochlorothiazide: 10 mg with 12.5 mg (quinapril HCl and hydrochlorothiazide 10/12.5), 20 mg with 12.5 mg (quinapril HCl and hydrochlorothiazide 20/12.5), and 20 mg with 25 mg (quinapril HCl and hydrochlorothiazide 20/25). Inactive ingredients: lactose, magnesium carbonate, crospovidone, povidone, magnesium stearate and opadry pink 03B14436 (hypromellose, titanium dioxide, polyethylene glycol and iron oxide red).
Sources
Quinapril Hydrochloride And Hydrochlorothiazide Manufacturers
-
Camber Pharmaceuticals
Quinapril Hydrochloride And Hydrochlorothiazide | Roxane Laboratories, Inc
Neoplastic DiseasesOral administration in tablet form is often preferred when low doses are being administered since absorption is rapid and effective serum levels are obtained.
Choriocarcinomaand similar trophoblastic diseasesMethotrexate is administered orally or intramuscularly in doses of 15 to 30 mg daily for a five-day course. Such courses are usually repeated for 3 to 5 times as required, with rest periods of one or more weeks interposed between courses, until any manifesting toxic symptoms subside. The effectiveness of therapy is ordinarily evaluated by 24-hour quantitative analysis of urinary chorionic gonadotropin (hCG), which should return to normal or less than 50 IU/24 hr usually after the third or fourth course and usually be followed by a complete resolution of measurable lesions in 4 to 6 weeks. One to two courses of methotrexate after normalization of hCG is usually recommended. Before each course of the drug careful clinical assessment is essential. Cyclic combination therapy of methotrexate with other antitumor drugs has been reported as being useful.
Since hydatidiform mole may precede choriocarcinoma, prophylactic chemotherapy with methotrexate has been recommended.
Chorioadenoma destruens is considered to be an invasive form of hydatidiform mole. Methotrexate is administered in these disease states in doses similar to those recommended for choriocarcinoma.
LeukemiaAcute lymphoblastic leukemia in pediatric patients and young adolescents is the most responsive to present day chemotherapy. In young adults and older patients, clinical remission is more difficult to obtain and early relapse is more common.
Methotrexate alone or in combination with steroids was used initially for induction of remission in acute lymphoblastic leukemias. More recently corticosteroid therapy, in combination with other antileukemic drugs or in cyclic combinations with methotrexate included, has appeared to produce rapid and effective remissions. When used for induction, methotrexate in doses of 3.3 mg/m2 in combination with 60 mg/m2 of prednisone, given daily, produced remissions in 50% of patients treated, usually within a period of 4 to 6 weeks. Methotrexate in combination with other agents appears to be the drug of choice for securing maintenance of drug-induced remissions. When remission is achieved and supportive care has produced general clinical improvement, maintenance therapy is initiated, as follows: Methotrexate is administered 2 times weekly either by mouth or intramuscularly in total weekly doses of 30 mg/m2. It has also been given in doses of 2.5 mg/kg intravenously every 14 days. If and when relapse does occur, reinduction of remission can again usually be obtained by repeating the initial induction regimen.
A variety of combination chemotherapy regimens have been used for both induction and maintenance therapy in acute lymphoblastic leukemia. The physician should be familiar with the new advances in antileukemic therapy.
Lymphomas
In Burkitt’s tumor, Stages I-II, methotrexate has produced prolonged remissions in some cases. Recommended dosage is 10 to 25 mg/day orally for 4 to 8 days. In Stage III, methotrexate is commonly given concomitantly with other antitumor agents. Treatment in all stages usually consists of several courses of the drug interposed with 7 to 10 day rest periods. Lymphosarcomas in Stage III may respond to combined drug therapy with methotrexate given in doses of 0.625 to 2.5 mg/kg daily.
Mycosis Fungoides (cutaneous T cell lymphoma)Therapy with methotrexate as a single agent appears to produce clinical responses in up to 50% of patients treated. Dosage in early stages is usually 5 to 50 mg once weekly. Dose reduction or cessation is guided by patient response and hematologic monitoring. Methotrexate has also been administered twice weekly in doses ranging from 15 to 37.5 mg in patients who have responded poorly to weekly therapy.
Psoriasis, Rheumatoid Arthritis, and Juvenile Rheumatoid Arthritis Adult Rheumatoid ArthritisRecommended Starting Dosage Schedules
• Single oral doses of 7.5 mg once weekly. • Divided oral dosages of 2.5 mg at 12 hour intervals for 3 doses given as a course once weekly. Polyarticular-Course Juvenile Rheumatoid ArthritisThe recommended starting dose is 10 mg/m2 given once weekly.
For either adult RA or polyarticular-course JRA dosages may be adjusted gradually to achieve an optimal response. Limited experience shows a significant increase in the incidence and severity of serious toxic reactions, especially bone marrow suppression, at doses greater than 20 mg/wk in adults. Although there is experience with doses up to 30 mg/m2/wk in children, there are too few published data to assess how doses over 20 mg/m2/wk might affect the risk of serious toxicity in children. Experience does suggest, however, that children receiving 20 to 30 mg/m2/wk (0.65 to 1.0 mg/kg/wk) may have better absorption and fewer gastrointestional side effects if methotrexate is administered either intramuscularly or subcutaneously.
Therapeutic response usually begins within 3 to 6 weeks and the patient may continue to improve for another 12 weeks or more.
The optimal duration of therapy is unknown. Limited data available from long-term studies in adults indicate that the initial clinical improvement is maintained for at least two years with continued therapy. When methotrexate is discontinued, the arthritis usually worsens within 3 to 6 weeks.
The patient should befully informed of the risks involved and should be under constant supervision of the physician. (See Information for Patients under PRECAUTIONS.) Assessment of hematologic, hepatic, renal, and pulmonary function should be made by history, physical examination, and laboratory tests before beginning, periodically during, and before reinstituting methotrexate therapy. (See PRECAUTIONS.) Appropriate steps should be taken to avoid conception during methotrexate therapy. (See PRECAUTIONS and CONTRAINDICATIONS.)
All schedules should be continually tailored to the individual patient. An initial test dose may be given prior to the regular dosing schedule to detect any extreme sensitivity to adverse effects. (See ADVERSE REACTIONS.) Maximal myelosuppression usually occurs in seven to ten days.
PsoriasisRecommended Starting Dose Schedules
• Weekly single oral, IM or IV dose schedule: 10 to 25 mg per week until adequate response is achieved. • Divided oral dose schedule: 2.5 mg at 12-hour intervals for three doses.Dosages in each schedule may be gradually adjusted to achieve optimal clinical response; 30 mg/week should not ordinarily be exceeded.
Once optimal clinical response has been achieved, each dosage schedule should be reduced to the lowest possible amount of drug and to the longest possible rest period. The use of methotrexate may permit the return to conventional topical therapy, which should be encouraged.
-
Physicians Total Care, Inc.
Quinapril Hydrochloride And Hydrochlorothiazide | Physicians Total Care, Inc.
As individual monotherapy, quinapril is an effective treatment of hypertension in once-daily doses of 10 to 80 mg and hydrochlorothiazide is effective in doses of 12.5 to 50 mg. In clinical trials of quinapril/hydrochlorothiazide combination therapy using quinapril doses of 2.5 to 40 mg and hydrochlorothiazide doses of 6.25 to 25 mg, the antihypertensive effects increased with increasing dose of either component.
The side effects (see WARNINGS) of quinapril are generally rare and apparently independent of dose; those of hydrochlorothiazide are a mixture of dose-dependent phenomena (primarily hypokalemia) and dose-independent phenomena (e.g., pancreatitis), the former much more common than the latter. Therapy with any combination of quinapril and hydrochlorothiazide will be associated with both sets of dose-independent side effects, but regimens that combine low doses of hydrochlorothiazide with quinapril produce minimal effects on serum potassium. In clinical trials of quinapril hydrochloride and hydrochlorothiazide, the average change in serum potassium was near zero in subjects who received HCTZ 6.25 mg in the combination, and the average subject who received 10 to 40/12.5 to 25 mg experienced a milder reduction in serum potassium than that experienced by the average subject receiving the same dose of hydrochlorothiazide monotherapy.
To minimize dose-independent side effects, it is usually appropriate to begin combination therapy only after a patient has failed to achieve the desired effect with monotherapy.
Therapy Guided by Clinical Effect
Patients whose blood pressures are not adequately controlled with quinapril monotherapy may instead be given quinapril hydrochloride and hydrochlorothiazide tablets 10 mg/12.5 mg or 20 mg/12.5 mg. Further increases of either or both components could depend on clinical response. The hydrochlorothiazide dose should generally not be increased until 2 to 3 weeks have elapsed. Patients whose blood pressures are adequately controlled with 25 mg of daily hydrochloro-thiazide, but who experience significant potassium loss with this regimen, may achieve blood pressure control with less electrolyte disturbance if they are switched to quinapril hydrochloride and hydrochlorothiazide tablets 10 mg/12.5 mg or 20 mg/12.5 mg.
Replacement Therapy
For convenience, patients who are adequately treated with 20 mg of quinapril and 25 mg of hydrochlorothiazide and experience no significant electrolyte disturbances may instead wish to receive quinapril hydrochloride and hydrochlorothiazide tablets 20 mg/25 mg.
Use in Renal Impairment
Regimens of therapy with quinapril hydrochloride and hydrochlorothiazide tablets need not take account of renal function as long as the patient’s creatinine clearance is > 30 mL/min/1.73 m2 (serum creatinine roughly ≤ 3 mg/dL or 265 µmol/L). In patients with more severe renal impairment, loop diuretics are preferred to thiazides. Therefore, quinapril hydrochloride and hydrochlorothiazide tablets are not recommended for use in these patients.
-
Avkare, Inc.
Quinapril Hydrochloride And Hydrochlorothiazide | Avkare, Inc.
As individual monotherapy, quinapril is an effective treatment of hypertension in once-daily doses of 10 to 80 mg and hydrochlorothiazide is effective in doses of 12.5 to 50 mg. In clinical trials of quinapril and hydrochlorothiazide combination therapy using quinapril doses of 2.5 to 40 mg and hydrochlorothiazide doses of 6.25 to 25 mg, the antihypertensive effects increased with increasing dose of either component.
The side effects (see WARNINGS) of quinapril are generally rare and apparently independent of dose; those of hydrochlorothiazide are a mixture of dose-dependent phenomena (primarily hypokalemia) and dose-independent phenomena (eg, pancreatitis), the former much more common than the latter. Therapy with any combination of quinapril and hydrochlorothiazide will be associated with both sets of dose-independent side effects, but regimens that combine low doses of hydrochlorothiazide with quinapril produce minimal effects on serum potassium. In clinical trials of quinapril HCl and hydrochlorothiazide tablets, the average change in serum potassium was near zero in subjects who received HCTZ 6.25 mg in the combination, and the average subject who received 10 to 40/12.5 to 25 mg experienced a milder reduction in serum potassium than that experienced by the average subject receiving the same dose of hydrochlorothiazide monotherapy.
To minimize dose-independent side effects, it is usually appropriate to begin combination therapy only after a patient has failed to achieve the desired effect with monotherapy.
Therapy Guided by Clinical Effect
Patients whose blood pressures are not adequately controlled with quinapril monotherapy may instead be given quinapril HCl and hydrochlorothiazide tablets 10/12.5 or 20/12.5. Further increases of either or both components could depend on clinical response. The hydrochlorothiazide dose should generally not be increased until 2 to 3 weeks have elapsed. Patients whose blood pressures are adequately controlled with 25 mg of daily hydrochlorothiazide, but who experience significant potassium loss with this regimen, may achieve blood pressure control with less electrolyte disturbance if they are switched to quinapril HCl and hydrochlorothiazide tablets 10/12.5 or 20/12.5.
Replacement Therapy
For convenience, patients who are adequately treated with 20 mg of quinapril and 25 mg of hydrochlorothiazide and experience no significant electrolyte disturbances may instead wish to receive quinapril HCl and hydrochlorothiazide tablets 20/25.
Use in Renal Impairment
Regimens of therapy with quinapril HCl and hydrochlorothiazide tablets need not take account of renal function as long as the patient’s creatinine clearance is >30 mL/min/1.73 m2 (serum creatinine roughly ≤3 mg/dL or 265 μmol/L). In patients with more severe renal impairment, loop diuretics are preferred to thiazides. Therefore, quinapril HCl and hydrochlorothiazide tablets are not recommended for use in these patients.
-
Camber Pharmaceuticals
Quinapril Hydrochloride And Hydrochlorothiazide | Barr Laboratories Inc.
Amphetamines should be administered at the lowest effective dosage and dosage should be individually adjusted. Late evening doses should be avoided because of the resulting insomnia.
NarcolepsyUsual dose is 5 to 60 mg per day in divided doses, depending on the individual patient response.
Narcolepsy seldom occurs in children under 12 years of age; however, when it does, dextroamphetamine sulfate extended-release capsules may be used. The suggested initial dose for patients aged 6 to 12 is 5 mg daily; daily dose may be raised in increments of 5 mg at weekly intervals until an optimal response is obtained. In patients 12 years of age and older, start with 10 mg daily; daily dosage may be raised in increments of 10 mg at weekly intervals until an optimal response is obtained. If bothersome adverse reactions appear (e.g., insomnia or anorexia), dosage should be reduced. Extended-release capsules may be used for once-a-day dosage wherever appropriate.
Attention Deficit Disorder with HyperactivityThe dextroamphetamine sulfate extended-release capsule formulation is not recommended for pediatric patients younger than 6 years of age.
In pediatric patients 6 years of age and older, start with 5 mg once or twice daily; daily dosage may be raised in increments of 5 mg at weekly intervals until optimal response is obtained. Only in rare cases will it be necessary to exceed a total of 40 mg per day.
Extended-release capsules may be used for once-a-day dosage wherever appropriate.
Where possible, drug administration should be interrupted occasionally to determine if there is a recurrence of behavioral symptoms sufficient to require continued therapy.
-
Ranbaxy Pharmaceuticals Inc.
Quinapril Hydrochloride And Hydrochlorothiazide | Pd-rx Pharmaceuticals, Inc.
The patient should be placed on a standard cholesterol-lowering diet before receiving lovastatin and should continue on this diet during treatment with lovastatin (see NCEP Treatment Guidelines for details on dietary therapy). Lovastatin should be given with meals.
Adult PatientsThe usual recommended starting dose is 20 mg once a day given with the evening meal. The recommended dosing range is 10 to 80 mg/day in single or two divided doses; the maximum recommended dose is 80 mg/day. Doses should be individualized according to the recommended goal of therapy (see NCEP Guidelines and CLINICAL PHARMACOLOGY ). Patients requiring reductions in LDL-C of 20% or more to achieve their goal (see INDICATIONS AND USAGE) should be started on 20 mg/day of lovastatin. A starting dose of 10 mg may be considered for patients requiring smaller reductions. Adjustments should be made at intervals of 4 weeks or more.
Cholesterol levels should be monitored periodically and consideration should be given to reducing the dosage of lovastatin if cholesterol levels fall significantly below the targeted range.
-
Apotex Corp
Quinapril Hydrochloride And Hydrochlorothiazide | Apotex Corp
As individual monotherapy, quinapril is an effective treatment of hypertension in once-daily doses of 10 to 80 mg and hydrochlorothiazide is effective in doses of 12.5 to 50 mg. In clinical trials of quinapril/hydrochlorothiazide combination therapy using quinapril doses of 2.5 to 40 mg and hydrochlorothiazide doses of 6.25 to 25 mg, the antihypertensive effects increased with increasing dose of either component.
The side effects (see WARNINGS) of quinapril are generally rare and apparently independent of dose; those of hydrochlorothiazide are a mixture of dose-dependent phenomena (primarily hypokalemia) and dose-independent phenomena (e.g., pancreatitis), the former much more common than the latter. Therapy with any combination of quinapril and hydrochlorothiazide will be associated with both sets of dose-independent side effects, but regimens that combine low doses of hydrochlorothiazide with quinapril produce minimal effects on serum potassium. In clinical trials of quinapril and hydrochlorothiazide, the average change in serum potassium was near zero in subjects who received hydrochlorothiazide 6.25 mg in the combination, and the average subject who received 10 to 40/12.5 to 25 mg experienced a milder reduction in serum potassium than that experienced by the average subject receiving the same dose of hydrochlorothiazide monotherapy.
To minimize dose-independent side effects, it is usually appropriate to begin combination therapy only after a patient has failed to achieve the desired effect with monotherapy.
Therapy Guided by Clinical Effect
Patients whose blood pressures are not adequately controlled with quinapril monotherapy may instead be given quinapril hydrochloride and hydrochlorothiazide tablets 10 mg/12.5 mg or 20 mg/12.5 mg. Further increases of either or both components could depend on clinical response. The hydrochlorothiazide dose should generally not be increased until 2 to 3 weeks have elapsed. Patients whose blood pressures are adequately controlled with 25 mg of daily hydrochlorothiazide, but who experience significant potassium loss with this regimen, may achieve blood pressure control with less electrolyte disturbance if they are switched to quinapril hydrochloride and hydrochlorothiazide tablets 10 mg/12.5 mg or 20 mg/12.5 mg.
Replacement Therapy
For convenience, patients who are adequately treated with 20 mg of quinapril and 25 mg of hydrochlorothiazide and experience no significant electrolyte disturbances may instead wish to receive quinapril hydrochloride and hydrochlorothiazide tablets 20 mg/25 mg.
Use in Renal Impairment
Regimens of therapy with quinapril and hydrochlorothiazide need not take account of renal function as long as the patient's creatinine clearance is >30 mL/min/1.73 m2 (serum creatinine roughly ≤3 mg/dL or 265 mcmol/L). In patients with more severe renal impairment, loop diuretics are preferred to thiazides. Therefore, quinapril and hydrochlorothiazide tablets are not recommended for use in these patients.
-
Greenstone Llc
Quinapril Hydrochloride And Hydrochlorothiazide | Greenstone Llc
As individual monotherapy, quinapril is an effective treatment of hypertension in once-daily doses of 10 to 80 mg and hydrochlorothiazide is effective in doses of 12.5 to 50 mg. In clinical trials of quinapril/hydrochlorothiazide combination therapy using quinapril doses of 2.5 to 40 mg and hydrochlorothiazide doses of 6.25 to 25 mg, the antihypertensive effects increased with increasing dose of either component.
The side effects (see WARNINGS) of quinapril are generally rare and apparently independent of dose; those of hydrochlorothiazide are a mixture of dose-dependent phenomena (primarily hypokalemia) and dose-independent phenomena (e.g., pancreatitis), the former much more common than the latter. Therapy with any combination of quinapril and hydrochlorothiazide will be associated with both sets of dose-independent side effects, but regimens that combine low doses of hydrochlorothiazide with quinapril produce minimal effects on serum potassium. In clinical trials of quinapril HCl/hydrochlorothiazide tablets, the average change in serum potassium was near zero in subjects who received HCTZ 6.25 mg in the combination, and the average subject who received 10 to 40/12.5 to 25 mg experienced a milder reduction in serum potassium than that experienced by the average subject receiving the same dose of hydrochlorothiazide monotherapy.
To minimize dose-independent side effects, it is usually appropriate to begin combination therapy only after a patient has failed to achieve the desired effect with monotherapy.
Therapy Guided by Clinical EffectPatients whose blood pressures are not adequately controlled with quinapril monotherapy may instead be given quinapril HCl/hydrochlorothiazide tablets 10/12.5 or 20/12.5. Further increases of either or both components could depend on clinical response. The hydrochlorothiazide dose should generally not be increased until 2 to 3 weeks have elapsed. Patients whose blood pressures are adequately controlled with 25 mg of daily hydrochlorothiazide, but who experience significant potassium loss with this regimen, may achieve blood pressure control with less electrolyte disturbance if they are switched to quinapril HCl/hydrochlorothiazide tablets 10/12.5 or 20/12.5.
Replacement TherapyFor convenience, patients who are adequately treated with 20 mg of quinapril and 25 mg of hydrochlorothiazide and experience no significant electrolyte disturbances may instead wish to receive quinapril HCl/hydrochlorothiazide tablets 20/25.
Use in Renal ImpairmentRegimens of therapy with quinapril HCl/hydrochlorothiazide tablets need not take account of renal function as long as the patient's creatinine clearance is >30 mL/min/1.73 m2 (serum creatinine roughly ≤3 mg/dL or 265 µmol/L). In patients with more severe renal impairment, loop diuretics are preferred to thiazides. Therefore, quinapril HCl/hydrochlorothiazide tablets are not recommended for use in these patients.
-
Mylan Pharmaceuticals Inc.
Quinapril Hydrochloride And Hydrochlorothiazide | Aurobindo Pharma Limited
2.1 HypertensionThe recommended initial dose for patients not receiving a diuretic is 2.5 mg once a day. Adjust dose according to blood pressure response. The usual maintenance dosage range is 2.5 mg to 20 mg per day administered as a single dose or in two equally divided doses. In some patients treated once daily, the antihypertensive effect may diminish toward the end of the dosing interval. In such patients, consider an increase in dosage or twice daily administration. If blood pressure is not controlled with ramipril capsules alone, a diuretic can be added.
2.3 Heart Failure Post-Myocardial InfarctionFor the treatment of post-myocardial infarction patients who have shown signs of congestive heart failure, the recommended starting dose of ramipril capsules is 2.5 mg twice daily (5 mg per day). A patient who becomes hypotensive at this dose may be switched to 1.25 mg twice daily. After one week at the starting dose, increase dose (if tolerated) toward a target dose of 5 mg twice daily, with dosage increases being about 3 weeks apart.
2.4 General Dosing Information
After the initial dose of ramipril capsules, observe the patient under medical supervision for at least two hours and until blood pressure has stabilized for at least an additional hour. If possible, reduce the dose of any concomitant diuretic as this may diminish the likelihood of hypotension. The appearance of hypotension after the initial dose of ramipril capsules does not preclude subsequent careful dose titration with the drug, following effective management of the hypotension [see Warnings and Precautions (5.5), Drug Interactions (7.1)].Generally, swallow ramipril capsules whole. The ramipril capsule can also be opened and the contents sprinkled on a small amount (about 4 oz.) of applesauce or mixed in 4 oz. (120 mL) of water or apple juice. To be sure that ramipril is not lost when such a mixture is used, consume the mixture in its entirety. The described mixtures can be pre-prepared and stored for up to 24 hours at room temperature or up to 48 hours under refrigeration.
2.5 Dosage Adjustment
Concomitant administration of ramipril capsules with potassium supplements, potassium salt substitutes, or potassium-sparing diuretics can lead to increases of serum potassium [see Warnings and Precautions (5.8)].Renal Impairment
Establish baseline renal function in patients initiating ramipril capsules. Usual regimens of therapy with ramipril capsules may be followed in patients with estimated creatinine clearance >40 mL/min. However, in patients with worse impairment, 25% of the usual dose of ramipril is expected to produce full therapeutic levels of ramiprilat [see Use in Specific Populations (8.6)].
Hypertension
For patients with hypertension and renal impairment, the recommended initial dose is 1.25 mg ramipril capsules once daily. Dosage may be titrated upward until blood pressure is controlled or to a maximum total daily dose of 5 mg.
Heart Failure Post-Myocardial Infarction
For patients with heart failure and renal impairment, the recommended initial dose is 1.25 mg ramipril capsules once daily. The dose may be increased to 1.25 mg twice daily, and up to a maximum dose of 2.5 mg twice daily depending on clinical response and tolerability.
Volume Depletion or Renal Artery Stenosis
Blood pressure decreases associated with any dose of ramipril capsules depend, in part, on the presence or absence of volume depletion (e.g., past and current diuretic use) or the presence or absence of renal artery stenosis. If such circumstances are suspected to be present, initiate dosing at 1.25 mg once daily. Adjust dosage according to blood pressure response.
Login To Your Free Account